mirror of https://github.com/hpcaitech/ColossalAI
[autochunk] support transformer (#2526)
parent
6e0faa70e0
commit
63199c6687
|
@ -3,9 +3,12 @@ from typing import Any, Dict, Iterable, List, Tuple
|
|||
import torch
|
||||
|
||||
import colossalai
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
|
||||
if CODEGEN_AVAILABLE:
|
||||
AUTOCHUNK_AVAILABLE = CODEGEN_AVAILABLE and is_compatible_with_meta()
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from torch.fx.graph import (
|
||||
CodeGen,
|
||||
PythonCode,
|
||||
|
@ -272,7 +275,7 @@ def emit_code_with_chunk(
|
|||
node_idx += 1
|
||||
|
||||
|
||||
if CODEGEN_AVAILABLE:
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
|
||||
class AutoChunkCodeGen(CodeGen):
|
||||
|
||||
|
|
|
@ -8,7 +8,13 @@ from .reorder_graph import ReorderGraph
|
|||
from .select_chunk import SelectChunk
|
||||
from .trace_flow import TraceFlow
|
||||
from .trace_indice import TraceIndice
|
||||
from .utils import get_logger, get_node_shape, is_non_compute_node, is_non_compute_node_except_placeholder
|
||||
from .utils import (
|
||||
find_chunk_compute_input_and_output_nodes,
|
||||
get_logger,
|
||||
get_node_shape,
|
||||
is_non_compute_node,
|
||||
is_non_compute_node_except_placeholder,
|
||||
)
|
||||
|
||||
|
||||
class SearchChunk(object):
|
||||
|
@ -114,6 +120,12 @@ class SearchChunk(object):
|
|||
chunk_region_start (int)
|
||||
chunk_region_end (int)
|
||||
"""
|
||||
# check if peak node already in chunkinfo
|
||||
if chunk_regions is not None:
|
||||
for i in chunk_regions:
|
||||
if i["region"][0] < peak_node_idx <= i["region"][1]:
|
||||
return None
|
||||
|
||||
free_vars = self._get_free_var_idx()
|
||||
free_var_num = len(free_vars)
|
||||
active_node_num = [len(i) for i in active_node]
|
||||
|
@ -152,55 +164,6 @@ class SearchChunk(object):
|
|||
chunk_region_end = region[0] - 1
|
||||
return chunk_region_start, chunk_region_end
|
||||
|
||||
def _find_chunk_info(self, input_trace, output_trace, start_idx, end_idx) -> List:
|
||||
"""
|
||||
Find chunk info for a region.
|
||||
|
||||
We are given the region start and region end, and need to find out all chunk info for it.
|
||||
We first loop every dim of start node and end node, to see if we can find dim pair,
|
||||
which is linked in a flow and not computed.
|
||||
If found, we then search flow in the whole region to find out all chunk infos.
|
||||
|
||||
Args:
|
||||
input_trace (List): node's input trace in region
|
||||
output_trace (List): node's output trace in region
|
||||
start_idx (int): region start node index
|
||||
end_idx (int): region end node index
|
||||
|
||||
Returns:
|
||||
chunk_infos: possible regions found
|
||||
"""
|
||||
start_traces = input_trace[start_idx]
|
||||
end_trace = output_trace[end_idx]
|
||||
end_node = self.trace_indice.node_list[end_idx]
|
||||
chunk_infos = []
|
||||
for end_dim, _ in enumerate(end_trace["indice"]):
|
||||
if len(start_traces) > 1:
|
||||
continue
|
||||
for start_node, start_trace in start_traces.items():
|
||||
for start_dim, _ in enumerate(start_trace["indice"]):
|
||||
# dim size cannot be 1
|
||||
if (get_node_shape(end_node)[end_dim] == 1 or get_node_shape(start_node)[start_dim] == 1):
|
||||
continue
|
||||
# must have users
|
||||
if len(end_node.users) == 0:
|
||||
continue
|
||||
# check index source align
|
||||
if not self.trace_flow.check_index_source(start_dim, start_node, start_idx, end_dim, end_node):
|
||||
continue
|
||||
# check index copmute
|
||||
if not self.trace_flow.check_index_compute(start_idx, end_dim, end_node, end_idx):
|
||||
continue
|
||||
# flow search
|
||||
chunk_info = self.trace_flow.flow_search(start_idx, start_dim, end_idx, end_dim)
|
||||
if chunk_info is None:
|
||||
continue
|
||||
# check index copmute
|
||||
if not self.trace_flow.check_index_duplicate(chunk_info):
|
||||
continue
|
||||
chunk_infos.append(chunk_info)
|
||||
return chunk_infos
|
||||
|
||||
def _search_possible_chunk_regions(self, max_chunk_region: Tuple, peak_node: Node) -> List:
|
||||
"""
|
||||
Search every possible region within the max chunk region.
|
||||
|
@ -228,9 +191,8 @@ class SearchChunk(object):
|
|||
if is_non_compute_node(self.trace_indice.node_list[start_idx]) or is_non_compute_node(
|
||||
self.trace_indice.node_list[end_idx]):
|
||||
continue
|
||||
|
||||
# select free dim
|
||||
chunk_info = self._find_chunk_info(input_trace, output_trace, start_idx, end_idx)
|
||||
chunk_info = self.trace_flow.find_chunk_info(input_trace, output_trace, start_idx, end_idx)
|
||||
if len(chunk_info) > 0:
|
||||
possible_chunk_region.extend(chunk_info)
|
||||
return possible_chunk_region
|
||||
|
|
|
@ -5,6 +5,7 @@ from .utils import is_non_compute_node
|
|||
|
||||
|
||||
class SelectChunk(object):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
trace_indice: TraceIndice,
|
||||
|
@ -17,13 +18,11 @@ class SelectChunk(object):
|
|||
self.reorder_graph = reorder_graph
|
||||
if max_memory is not None:
|
||||
self.stratge = "fit_memory"
|
||||
self.max_memory = max_memory # MB
|
||||
self.max_memory = max_memory # MB
|
||||
else:
|
||||
self.stratge = "min_memory"
|
||||
|
||||
def _select_best_chunk_region(
|
||||
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||
):
|
||||
def _select_best_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak):
|
||||
if self.stratge == "min_memory":
|
||||
best_region = self._select_min_memory_chunk_region(
|
||||
possible_chunk_regions,
|
||||
|
@ -44,9 +43,8 @@ class SelectChunk(object):
|
|||
raise RuntimeError()
|
||||
return best_region
|
||||
|
||||
def _select_fit_memory_chunk_region(
|
||||
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||
):
|
||||
def _select_fit_memory_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region,
|
||||
mem_peak):
|
||||
# stop chunk if max memory satisfy memory limit
|
||||
if max(mem_peak) < self.max_memory:
|
||||
return None
|
||||
|
@ -63,33 +61,26 @@ class SelectChunk(object):
|
|||
if len(possible_chunk_regions) == 0:
|
||||
return None
|
||||
|
||||
max_possible_chunk_region = (min([i["region"][0] for i in possible_chunk_regions]),
|
||||
max([i["region"][1] for i in possible_chunk_regions]))
|
||||
|
||||
# get mem for chunk region
|
||||
regions_dict = []
|
||||
for region in possible_chunk_regions:
|
||||
cur_region = region.copy()
|
||||
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(
|
||||
self.trace_indice.node_list, cur_region
|
||||
)
|
||||
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(self.trace_indice.node_list, cur_region)
|
||||
cur_chunk_infos = chunk_infos + [cur_region]
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
|
||||
cur_node_list, cur_chunk_infos
|
||||
)[0]
|
||||
cur_chunk_region_peak = cur_mem_peak[
|
||||
max_chunk_region[0] : max_chunk_region[1] + 1
|
||||
]
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(cur_node_list, cur_chunk_infos)[0]
|
||||
cur_chunk_region_peak = cur_mem_peak[max_possible_chunk_region[0]:max_possible_chunk_region[1] + 1]
|
||||
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
||||
if cur_chunk_region_max_peak < self.max_memory:
|
||||
regions_dict.append(
|
||||
{
|
||||
"chunk_info": region,
|
||||
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||
"chunk_len": self._get_compute_node_num(
|
||||
region["region"][0], region["region"][1]
|
||||
),
|
||||
"reorder_chunk_info": cur_region,
|
||||
"reorder_node_list": cur_node_list,
|
||||
}
|
||||
)
|
||||
regions_dict.append({
|
||||
"chunk_info": region,
|
||||
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||
"chunk_len": self._get_compute_node_num(region["region"][0], region["region"][1]),
|
||||
"reorder_chunk_info": cur_region,
|
||||
"reorder_node_list": cur_node_list,
|
||||
})
|
||||
# no region found
|
||||
if len(regions_dict) == 0:
|
||||
raise RuntimeError("Search failed. Try a larger memory threshold.")
|
||||
|
@ -113,20 +104,13 @@ class SelectChunk(object):
|
|||
chunk_size *= 2
|
||||
reorder_chunk_info["chunk_size"] = chunk_size
|
||||
cur_chunk_infos = chunk_infos + [reorder_chunk_info]
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
|
||||
chunk_region_dict["reorder_node_list"], cur_chunk_infos
|
||||
)[0]
|
||||
cur_chunk_max_mem = max(
|
||||
cur_mem_peak[
|
||||
reorder_chunk_info["region"][0] : reorder_chunk_info["region"][1]
|
||||
+ 1
|
||||
]
|
||||
)
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(chunk_region_dict["reorder_node_list"],
|
||||
cur_chunk_infos)[0]
|
||||
cur_chunk_max_mem = max(cur_mem_peak[reorder_chunk_info["region"][0]:reorder_chunk_info["region"][1] + 1])
|
||||
# search exact size
|
||||
chunk_info = chunk_region_dict["chunk_info"]
|
||||
chunk_info["chunk_size"] = self._chunk_size_binary_search(
|
||||
chunk_size // 2, chunk_size, chunk_region_dict, chunk_infos
|
||||
)
|
||||
chunk_info["chunk_size"] = self._chunk_size_binary_search(chunk_size // 2, chunk_size, chunk_region_dict,
|
||||
chunk_infos)
|
||||
return chunk_info
|
||||
|
||||
def _chunk_size_binary_search(self, left, right, chunk_region_dict, chunk_infos):
|
||||
|
@ -139,12 +123,9 @@ class SelectChunk(object):
|
|||
mid = int((left + right) / 2 + 0.5)
|
||||
chunk_info["chunk_size"] = mid
|
||||
cur_chunk_infos = chunk_infos + [chunk_info]
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
|
||||
chunk_region_dict["reorder_node_list"], cur_chunk_infos
|
||||
)[0]
|
||||
cur_chunk_max_mem = max(
|
||||
cur_mem_peak[chunk_info["region"][0] : chunk_info["region"][1] + 1]
|
||||
)
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(chunk_region_dict["reorder_node_list"],
|
||||
cur_chunk_infos)[0]
|
||||
cur_chunk_max_mem = max(cur_mem_peak[chunk_info["region"][0]:chunk_info["region"][1] + 1])
|
||||
if cur_chunk_max_mem >= self.max_memory:
|
||||
right = mid - gap
|
||||
else:
|
||||
|
@ -153,14 +134,13 @@ class SelectChunk(object):
|
|||
|
||||
def _get_compute_node_num(self, start, end):
|
||||
count = 0
|
||||
for i in self.trace_indice.node_list[start : end + 1]:
|
||||
for i in self.trace_indice.node_list[start:end + 1]:
|
||||
if not is_non_compute_node(i):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def _select_min_memory_chunk_region(
|
||||
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
||||
):
|
||||
def _select_min_memory_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region,
|
||||
mem_peak):
|
||||
# remove illegal regions
|
||||
illegal_regions = []
|
||||
for i in possible_chunk_regions:
|
||||
|
@ -173,37 +153,31 @@ class SelectChunk(object):
|
|||
if len(possible_chunk_regions) == 0:
|
||||
return None
|
||||
|
||||
# get max possible chunk region
|
||||
max_possible_chunk_region = (min([i["region"][0] for i in possible_chunk_regions]),
|
||||
max([i["region"][1] for i in possible_chunk_regions]))
|
||||
|
||||
# get mem for chunk region
|
||||
regions_dict = []
|
||||
regions_dict_list = []
|
||||
for region in possible_chunk_regions:
|
||||
cur_region = region.copy()
|
||||
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(
|
||||
self.trace_indice.node_list, cur_region
|
||||
)
|
||||
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(self.trace_indice.node_list, cur_region)
|
||||
cur_chunk_infos = chunk_infos + [cur_region]
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(
|
||||
cur_node_list, cur_chunk_infos
|
||||
)[0]
|
||||
cur_chunk_region_peak = cur_mem_peak[
|
||||
max_chunk_region[0] : max_chunk_region[1] + 1
|
||||
]
|
||||
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(cur_node_list, cur_chunk_infos)[0]
|
||||
cur_chunk_region_peak = cur_mem_peak[max_possible_chunk_region[0]:max_possible_chunk_region[1] + 1]
|
||||
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
||||
regions_dict.append(
|
||||
{
|
||||
"chunk_info": region,
|
||||
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||
"chunk_len": self._get_compute_node_num(
|
||||
region["region"][0], region["region"][1]
|
||||
),
|
||||
"reorder_chunk_info": cur_region,
|
||||
"reorder_node_list": cur_node_list,
|
||||
}
|
||||
)
|
||||
regions_dict_list.append({
|
||||
"chunk_info": region,
|
||||
"chunk_max_mem": cur_chunk_region_max_peak,
|
||||
"chunk_len": self._get_compute_node_num(region["region"][0], region["region"][1]),
|
||||
"reorder_chunk_info": cur_region,
|
||||
"reorder_node_list": cur_node_list,
|
||||
})
|
||||
|
||||
# select the min mem
|
||||
chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict]
|
||||
chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict_list]
|
||||
best_region_idx = chunk_max_mem.index(min(chunk_max_mem))
|
||||
best_region = regions_dict[best_region_idx]["chunk_info"]
|
||||
best_region = regions_dict_list[best_region_idx]["chunk_info"]
|
||||
if best_region is not None:
|
||||
best_region["chunk_size"] = 1
|
||||
return best_region
|
||||
|
@ -216,9 +190,7 @@ class SelectChunk(object):
|
|||
return False
|
||||
for i in chunk_infos:
|
||||
region = i["region"]
|
||||
if not (
|
||||
(chunk_region_start > region[1] and chunk_region_end > region[1])
|
||||
or (chunk_region_start < region[0] and chunk_region_end < region[0])
|
||||
):
|
||||
if not ((chunk_region_start > region[1] and chunk_region_end > region[1]) or
|
||||
(chunk_region_start < region[0] and chunk_region_end < region[0])):
|
||||
return False
|
||||
return True
|
||||
|
|
|
@ -8,9 +8,9 @@ from .utils import (
|
|||
find_chunk_compute_input_and_output_nodes,
|
||||
find_idx_by_name,
|
||||
flat_list,
|
||||
get_node_name,
|
||||
get_node_shape,
|
||||
is_non_compute_node,
|
||||
is_non_compute_node_except_placeholder,
|
||||
)
|
||||
|
||||
|
||||
|
@ -79,43 +79,6 @@ class TraceFlow(object):
|
|||
return node_dim
|
||||
return None
|
||||
|
||||
def check_index_duplicate(self, chunk_infos, return_dim=False):
|
||||
input_dim_after_node = {}
|
||||
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
|
||||
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
|
||||
inherit_dim = self._find_inherit_dim(input_node, v, self.trace_indice.node_list[k])
|
||||
if inherit_dim:
|
||||
input_dim_after_node[k] = inherit_dim
|
||||
|
||||
for node in self.trace_indice.node_list[chunk_infos["region"][0]:chunk_infos["region"][1] + 1]:
|
||||
if is_non_compute_node_except_placeholder(node):
|
||||
continue
|
||||
count = 0
|
||||
duplicate_dims = []
|
||||
node_trace_source = self.trace_indice._find_source_trace_from_node(node)
|
||||
for node_dim in range(len(get_node_shape(node))):
|
||||
duplicate_dim = []
|
||||
duplicate_flag = False
|
||||
dim_source = node_trace_source[node_dim]
|
||||
for k, v in dim_source.items():
|
||||
if chunk_infos["region"][0] <= k <= chunk_infos["region"][1]:
|
||||
if k in input_dim_after_node and input_dim_after_node[k] in v:
|
||||
duplicate_flag = True
|
||||
duplicate_dim.append((k, v))
|
||||
duplicate_dims.append(duplicate_dim)
|
||||
if duplicate_flag:
|
||||
count += 1
|
||||
|
||||
if count > 1:
|
||||
if return_dim:
|
||||
return False, duplicate_dims
|
||||
else:
|
||||
return False
|
||||
if return_dim:
|
||||
return True, None
|
||||
else:
|
||||
return True
|
||||
|
||||
def _assgin_single_node_flow(
|
||||
self,
|
||||
arg_node: Node,
|
||||
|
@ -225,9 +188,12 @@ class TraceFlow(object):
|
|||
if flow_flag == False:
|
||||
return None
|
||||
|
||||
if len(arg_list) == 2:
|
||||
if any(i in cur_node.name for i in ["add", "mul", "truediv"]):
|
||||
if len(arg_list) >= 2:
|
||||
# need to mark fix dim
|
||||
if any(i == get_node_name(cur_node) for i in ["add", "mul", "truediv", "sub", "where"]):
|
||||
for arg in arg_list:
|
||||
if get_node_shape(arg) is None:
|
||||
continue
|
||||
if not (start_idx <= find_idx_by_name(arg.name, self.trace_indice.node_list) < end_idx):
|
||||
continue
|
||||
arg_chunk_dim = all_node_info[arg]["chunk_dim"]
|
||||
|
@ -240,9 +206,8 @@ class TraceFlow(object):
|
|||
return None
|
||||
if i not in arg_fix_dim:
|
||||
arg_fix_dim.append(i)
|
||||
elif "einsum" in cur_node.name:
|
||||
pass
|
||||
elif "matmul" in cur_node.name:
|
||||
elif any(i == get_node_name(cur_node)
|
||||
for i in ["einsum", "matmul", "view", "to", "getitem", "tensor", "type"]):
|
||||
pass
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
@ -426,7 +391,7 @@ class TraceFlow(object):
|
|||
reshape_size = {}
|
||||
chunk_shape = get_node_shape(chunk_info["outputs"][0])[chunk_info["outputs_dim"]]
|
||||
for node in self.trace_indice.node_list[chunk_region[0]:chunk_region[1] + 1]:
|
||||
if any(i in node.name for i in ["reshape", "view"]):
|
||||
if any(i == get_node_name(node) for i in ["reshape", "view"]):
|
||||
reshape_args = flat_list(node.args[1:])
|
||||
chunk_dim = chunk_info["node_chunk_dim"][node]["chunk_dim"]
|
||||
new_shape = ""
|
||||
|
@ -443,3 +408,62 @@ class TraceFlow(object):
|
|||
reshape_size[node.name] = [origin_shape, new_shape]
|
||||
chunk_info["reshape_size"] = reshape_size
|
||||
return chunk_info
|
||||
|
||||
def find_chunk_info(self, input_trace, output_trace, start_idx, end_idx) -> List:
|
||||
"""
|
||||
Find chunk info for a region.
|
||||
|
||||
We are given the region start and region end, and need to find out all chunk info for it.
|
||||
We first loop every dim of start node and end node, to see if we can find dim pair,
|
||||
which is linked in a flow and not computed.
|
||||
If found, we then search flow in the whole region to find out all chunk infos.
|
||||
|
||||
Args:
|
||||
input_trace (List): node's input trace in region
|
||||
output_trace (List): node's output trace in region
|
||||
start_idx (int): region start node index
|
||||
end_idx (int): region end node index
|
||||
|
||||
Returns:
|
||||
chunk_infos: possible regions found
|
||||
"""
|
||||
start_traces = input_trace[start_idx]
|
||||
if len(start_traces) > 1: # TODO need to be removed
|
||||
return []
|
||||
end_trace = output_trace[end_idx]
|
||||
end_node = self.trace_indice.node_list[end_idx]
|
||||
|
||||
chunk_infos = []
|
||||
for end_dim, _ in enumerate(end_trace["indice"]):
|
||||
for start_node, start_trace in start_traces.items():
|
||||
for start_dim, _ in enumerate(start_trace["indice"]):
|
||||
if not self._check_region_start_end(start_node, start_dim, start_idx, end_node, end_dim, end_idx):
|
||||
continue
|
||||
# flow search
|
||||
chunk_info = self.flow_search(start_idx, start_dim, end_idx, end_dim)
|
||||
if chunk_info is None:
|
||||
continue
|
||||
chunk_infos.append(chunk_info)
|
||||
return chunk_infos
|
||||
|
||||
def _check_region_start_end(self, start_node: Node, start_dim: int, start_idx: int, end_node: Node, end_dim: int,
|
||||
end_idx: int) -> bool:
|
||||
"""
|
||||
check if region start and end is legal
|
||||
"""
|
||||
# dim cannot be None
|
||||
if (get_node_shape(end_node) is None or get_node_shape(start_node) is None):
|
||||
return False
|
||||
# dim size cannot be 1
|
||||
if (get_node_shape(end_node)[end_dim] == 1 or get_node_shape(start_node)[start_dim] == 1):
|
||||
return False
|
||||
# must have users
|
||||
if len(end_node.users) == 0:
|
||||
return False
|
||||
# check index source align
|
||||
if not self.check_index_source(start_dim, start_node, start_idx, end_dim, end_node):
|
||||
return False
|
||||
# check index copmute
|
||||
if not self.check_index_compute(start_idx, end_dim, end_node, end_idx):
|
||||
return False
|
||||
return True
|
||||
|
|
|
@ -3,7 +3,14 @@ from typing import Dict, List, Tuple
|
|||
|
||||
from torch.fx.node import Node
|
||||
|
||||
from .utils import find_first_tensor_arg, find_idx_by_name, flat_list, get_node_shape
|
||||
from .utils import (
|
||||
find_first_tensor_arg,
|
||||
find_idx_by_name,
|
||||
flat_list,
|
||||
get_module_node_name,
|
||||
get_node_name,
|
||||
get_node_shape,
|
||||
)
|
||||
|
||||
|
||||
class TraceIndice(object):
|
||||
|
@ -36,7 +43,7 @@ class TraceIndice(object):
|
|||
self.trace_range = []
|
||||
self.active_node_list = []
|
||||
|
||||
def _init_indice_trace_list(self):
|
||||
def _init_indice_trace_list(self) -> List:
|
||||
indice_trace_list = []
|
||||
for n in self.node_list:
|
||||
if get_node_shape(n) != None:
|
||||
|
@ -54,7 +61,7 @@ class TraceIndice(object):
|
|||
self.trace_range = trace_range
|
||||
self.active_node_list = active_node_list
|
||||
|
||||
def _add_indice(self):
|
||||
def _add_indice(self) -> int:
|
||||
"""
|
||||
Update the count and return it. To record the idx number.
|
||||
|
||||
|
@ -64,39 +71,30 @@ class TraceIndice(object):
|
|||
self.indice_count += 1
|
||||
return self.indice_count
|
||||
|
||||
def _del_dim(self, idx, dim_idx):
|
||||
def _del_dim(self, idx: int, dim_idx: int) -> None:
|
||||
"""
|
||||
delete a dim for indice, compute and source
|
||||
"""
|
||||
self.indice_trace_list[idx]["indice"].pop(dim_idx)
|
||||
self.indice_trace_list[idx]["compute"].pop(dim_idx)
|
||||
self.indice_trace_list[idx]["source"].pop(dim_idx)
|
||||
|
||||
def _add_dim(self, node_idx, dim_idx):
|
||||
def _add_dim(self, node_idx: int, dim_idx: int) -> None:
|
||||
"""
|
||||
add a dim for indice, compute and source
|
||||
"""
|
||||
self.indice_trace_list[node_idx]["indice"].insert(dim_idx, self._add_indice())
|
||||
self.indice_trace_list[node_idx]["compute"].insert(dim_idx, [])
|
||||
self.indice_trace_list[node_idx]["source"].insert(dim_idx, {})
|
||||
|
||||
def _transform_indice(self, node, node_dim):
|
||||
node_idx = self._find_indice_trace_from_node(node)
|
||||
dims = list(range(len(node_idx)))
|
||||
return dims[node_dim]
|
||||
|
||||
def _inherit_indice(self, node_from, node_from_dim, node_to, node_to_dim):
|
||||
node_from_dim = self._transform_indice(node_from, node_from_dim)
|
||||
node_to_dim = self._transform_indice(node_to, node_to_dim)
|
||||
node_from_trace = self._find_trace_from_node(node_from)
|
||||
node_to_trace = self._find_trace_from_node(node_to)
|
||||
node_to_trace["indice"][node_to_dim] = node_from_trace["indice"][node_from_dim]
|
||||
node_to_trace["compute"][node_to_dim] = copy.deepcopy(node_from_trace["compute"][node_from_dim])
|
||||
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
|
||||
|
||||
def _inherit_all_computation(self, node_from, node_to):
|
||||
node_from_compute = self._find_compute_trace_from_node(node_from)
|
||||
node_to_compute = self._find_compute_trace_from_node(node_to)
|
||||
assert len(node_from_compute) == len(node_to_compute)
|
||||
for i in range(len(node_from_compute)):
|
||||
self._add_source(node_from, i, node_to, i)
|
||||
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
|
||||
|
||||
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
|
||||
def _add_source(
|
||||
self,
|
||||
node_from: Node,
|
||||
node_from_dim: int,
|
||||
node_to: Node,
|
||||
node_to_dim: int,
|
||||
init=False,
|
||||
) -> None:
|
||||
node_from_dim = self._transform_indice(node_from, node_from_dim)
|
||||
node_from_trace_source = self._find_source_trace_from_node(node_from)
|
||||
node_to_dim = self._transform_indice(node_to, node_to_dim)
|
||||
|
@ -119,7 +117,50 @@ class TraceIndice(object):
|
|||
if d not in node_to_trace_source[node_to_dim][node_idx]:
|
||||
node_to_trace_source[node_to_dim][node_idx].append(d)
|
||||
|
||||
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
|
||||
def _transform_indice(self, node: Node, node_dim: int) -> int:
|
||||
node_idx = self._find_indice_trace_from_node(node)
|
||||
dims = list(range(len(node_idx)))
|
||||
return dims[node_dim]
|
||||
|
||||
def _inherit_indice(
|
||||
self,
|
||||
node_from: Node,
|
||||
node_from_dim: int,
|
||||
node_to: Node,
|
||||
node_to_dim: int,
|
||||
init: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
node_to's node_to_dim inherit node_from's node_from_dim by indice, compute and source
|
||||
"""
|
||||
node_from_dim = self._transform_indice(node_from, node_from_dim)
|
||||
node_to_dim = self._transform_indice(node_to, node_to_dim)
|
||||
node_from_trace = self._find_trace_from_node(node_from)
|
||||
node_to_trace = self._find_trace_from_node(node_to)
|
||||
if init:
|
||||
node_to_trace["indice"][node_to_dim] = node_from_trace["indice"][node_from_dim]
|
||||
node_to_trace["compute"][node_to_dim] = copy.deepcopy(node_from_trace["compute"][node_from_dim])
|
||||
else:
|
||||
for j in node_from_trace["compute"][node_from_dim]:
|
||||
if j not in node_to_trace["compute"][node_to_dim]:
|
||||
node_to_trace["compute"][node_to_dim].append(j)
|
||||
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init)
|
||||
|
||||
def _inherit_all_indice(self, node_from: Node, node_to: Node) -> None:
|
||||
"""
|
||||
inherit all dims with init
|
||||
"""
|
||||
# find indice just for assert length
|
||||
node_from_indice = self._find_indice_trace_from_node(node_from)
|
||||
node_to_indice = self._find_indice_trace_from_node(node_to)
|
||||
assert len(node_from_indice) == len(node_to_indice)
|
||||
for i in range(len(node_from_indice)):
|
||||
self._inherit_indice(node_from, i, node_to, i, init=True)
|
||||
|
||||
def _inherit_more_indice_from_node(self, node_from: Node, node_to: Node, exclude: List = None) -> None:
|
||||
"""
|
||||
inheirt indice from node without init
|
||||
"""
|
||||
if exclude == None:
|
||||
exclude = []
|
||||
else:
|
||||
|
@ -130,12 +171,9 @@ class TraceIndice(object):
|
|||
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
|
||||
if self._transform_indice(node_to, i) in exclude:
|
||||
continue
|
||||
self._add_source(node_from, i, node_to, i)
|
||||
for j in node_from_compute[i]:
|
||||
if j not in node_to_compute[i]:
|
||||
node_to_compute[i].append(j)
|
||||
self._inherit_indice(node_from, i, node_to, i, init=False)
|
||||
|
||||
def _mark_computation(self, node, idx, dim):
|
||||
def _mark_computation(self, node: Node, idx: int, dim: int) -> None:
|
||||
"""
|
||||
Mark some dims of node as computed.
|
||||
|
||||
|
@ -152,7 +190,7 @@ class TraceIndice(object):
|
|||
if idx not in self.indice_trace_list[idx]["compute"][cur_dim]:
|
||||
self.indice_trace_list[idx]["compute"][cur_dim].append(idx)
|
||||
|
||||
def _find_trace_from_node(self, node):
|
||||
def _find_trace_from_node(self, node: Node) -> Dict:
|
||||
"""
|
||||
Find node idx and compute trace by the node.
|
||||
|
||||
|
@ -166,7 +204,7 @@ class TraceIndice(object):
|
|||
node_dict = self.indice_trace_list[node_idx]
|
||||
return node_dict
|
||||
|
||||
def _find_source_trace_from_node(self, node):
|
||||
def _find_source_trace_from_node(self, node: Node) -> List:
|
||||
"""
|
||||
Find node source trace by the node.
|
||||
|
||||
|
@ -180,7 +218,7 @@ class TraceIndice(object):
|
|||
node_dict = self.indice_trace_list[node_idx]
|
||||
return node_dict["source"]
|
||||
|
||||
def _find_indice_trace_from_node(self, node):
|
||||
def _find_indice_trace_from_node(self, node) -> List:
|
||||
"""
|
||||
Find node idx trace by the node.
|
||||
|
||||
|
@ -192,7 +230,7 @@ class TraceIndice(object):
|
|||
node_idx = find_idx_by_name(node.name, self.node_list)
|
||||
return self.indice_trace_list[node_idx]["indice"]
|
||||
|
||||
def _find_compute_trace_from_node(self, node):
|
||||
def _find_compute_trace_from_node(self, node: Node) -> List:
|
||||
"""
|
||||
Find node compute trace by the node.
|
||||
|
||||
|
@ -204,7 +242,7 @@ class TraceIndice(object):
|
|||
node_idx = find_idx_by_name(node.name, self.node_list)
|
||||
return self.indice_trace_list[node_idx]["compute"]
|
||||
|
||||
def _assign_indice_as_input(self, node: Node, node_idx: int, input_node=None):
|
||||
def _assign_indice_as_input(self, node: Node, node_idx: int, input_node=None) -> None:
|
||||
"""
|
||||
Assign node's trace as its input node.
|
||||
|
||||
|
@ -214,15 +252,9 @@ class TraceIndice(object):
|
|||
"""
|
||||
if input_node == None:
|
||||
input_node = find_first_tensor_arg(node)
|
||||
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
|
||||
input_node_idx_trace = self.indice_trace_list[input_node_idx]["indice"]
|
||||
self._inherit_all_indice(input_node, node)
|
||||
|
||||
new_idx_trace = copy.deepcopy(input_node_idx_trace)
|
||||
self.indice_trace_list[node_idx]["indice"] = new_idx_trace
|
||||
|
||||
self._inherit_all_computation(input_node, node)
|
||||
|
||||
def _assign_all_indice(self, node: Node, node_idx: int):
|
||||
def _assign_all_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Add new indice for all node's dims.
|
||||
|
||||
|
@ -238,7 +270,7 @@ class TraceIndice(object):
|
|||
new_trace.append(self._add_indice())
|
||||
self.indice_trace_list[node_idx]["indice"] = new_trace
|
||||
|
||||
def _assign_transpose_indice(self, node: Node, node_idx: int):
|
||||
def _assign_transpose_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for transpose op.
|
||||
1. swap input's dim according to transpose args
|
||||
|
@ -255,7 +287,7 @@ class TraceIndice(object):
|
|||
self._inherit_indice(input_node, tranpose_dim[1], node, tranpose_dim[0])
|
||||
self._inherit_indice(input_node, tranpose_dim[0], node, tranpose_dim[1])
|
||||
|
||||
def _assign_permute_indice(self, node: Node, node_idx: int):
|
||||
def _assign_permute_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for permute op.
|
||||
1. swap input's dim according to permute args
|
||||
|
@ -272,7 +304,7 @@ class TraceIndice(object):
|
|||
for idx, d in enumerate(permute_dim):
|
||||
self._inherit_indice(input_node, d, node, idx)
|
||||
|
||||
def _assign_linear_indice(self, node: Node, node_idx: int):
|
||||
def _assign_linear_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for linear op.
|
||||
1. copy trace from input node and change last indice accroding to weight
|
||||
|
@ -293,7 +325,23 @@ class TraceIndice(object):
|
|||
|
||||
self._mark_computation(node, node_idx, [-1])
|
||||
|
||||
def _assign_matmul_indice(self, node: Node, node_idx: int):
|
||||
def _assign_addmm_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for addmm op.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
bias, input_node, weight = node.args
|
||||
|
||||
self._assign_indice_as_input(node, node_idx, input_node)
|
||||
self._inherit_indice(weight, 1, node, -1)
|
||||
self._inherit_indice(bias, -1, node, -1)
|
||||
|
||||
self._mark_computation(node, node_idx, [-1])
|
||||
|
||||
def _assign_matmul_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for matmul op.
|
||||
1. copy trace from matmul_left and change last indice accroding to matmul_right. (assert they have same length)
|
||||
|
@ -310,7 +358,7 @@ class TraceIndice(object):
|
|||
self._assign_indice_as_input(node, node_idx, matmul_left)
|
||||
self._inherit_indice(matmul_right, -1, node, -1)
|
||||
|
||||
self._mark_computation_from_node(matmul_right, node, [-1, -2])
|
||||
self._inherit_more_indice_from_node(matmul_right, node, [-1, -2])
|
||||
self._mark_computation(node, node_idx, [-1])
|
||||
|
||||
def _assign_layernorm_indice(self, node, idx):
|
||||
|
@ -341,14 +389,13 @@ class TraceIndice(object):
|
|||
for node_in in node.args:
|
||||
if type(node_in) == type(node):
|
||||
nodes_in.append(node_in)
|
||||
self._mark_computation_from_node(node_in, node)
|
||||
assert len(nodes_in) <= 2
|
||||
self._inherit_more_indice_from_node(node_in, node)
|
||||
|
||||
def _assgin_no_change_indice(self, node, idx):
|
||||
self._assign_indice_as_input(node, idx)
|
||||
for node_in in node.args:
|
||||
if type(node_in) == type(node):
|
||||
self._mark_computation_from_node(node_in, node)
|
||||
self._inherit_more_indice_from_node(node_in, node)
|
||||
|
||||
def _assign_einsum_indice(self, node, idx):
|
||||
"""
|
||||
|
@ -365,7 +412,7 @@ class TraceIndice(object):
|
|||
left, right = patterns.split("->")
|
||||
left = left.split(",")
|
||||
|
||||
if '...' in right:
|
||||
if "..." in right:
|
||||
replace_list = "!@#$%^&*"
|
||||
target_len = len(get_node_shape(node))
|
||||
add_len = target_len - len(right) + 3
|
||||
|
@ -399,7 +446,22 @@ class TraceIndice(object):
|
|||
self._assign_indice_as_input(node, idx)
|
||||
self._mark_computation(node, idx, [node.kwargs["dim"]])
|
||||
|
||||
def _assign_unsqueeze_indice(self, node: Node, node_idx: int):
|
||||
def _assign_split_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for split op.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
for _ in range(len(get_node_shape(node.args[0]))):
|
||||
self._add_dim(node_idx, 0)
|
||||
self._assign_indice_as_input(node, node_idx)
|
||||
dim_idx = node.kwargs["dim"]
|
||||
self._del_dim(node_idx, dim_idx)
|
||||
self._add_dim(node_idx, dim_idx)
|
||||
|
||||
def _assign_unsqueeze_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for unsqueeze op.
|
||||
1. assign new indice for unsqueeze dim
|
||||
|
@ -416,18 +478,7 @@ class TraceIndice(object):
|
|||
dim_idx = list(range(len(get_node_shape(node))))[dim_idx]
|
||||
self._add_dim(node_idx, dim_idx)
|
||||
|
||||
def _assign_dropout_indice(self, node: Node, node_idx: int):
|
||||
"""
|
||||
Assign indice for unsqueeze op.
|
||||
1. assign new indice for unsqueeze dim
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_indice_as_input(node, node_idx)
|
||||
|
||||
def _assign_ones_like_indice(self, node: Node, node_idx: int):
|
||||
def _assign_ones_like_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for oneslike op.
|
||||
1. assign new indice for all dim
|
||||
|
@ -438,7 +489,7 @@ class TraceIndice(object):
|
|||
"""
|
||||
self._assign_all_indice(node, node_idx)
|
||||
|
||||
def _assign_cat_indice(self, node: Node, node_idx: int):
|
||||
def _assign_cat_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for cat op.
|
||||
|
||||
|
@ -449,12 +500,12 @@ class TraceIndice(object):
|
|||
nodes_in = flat_list(node.args[0])
|
||||
self._assign_indice_as_input(node, node_idx, input_node=nodes_in[0])
|
||||
for n in nodes_in[1:]:
|
||||
self._mark_computation_from_node(n, node)
|
||||
self._inherit_more_indice_from_node(n, node)
|
||||
cat_dim = node.kwargs["dim"]
|
||||
self._del_dim(node_idx, cat_dim)
|
||||
self._add_dim(node_idx, cat_dim)
|
||||
|
||||
def _assign_sum_indice(self, node: Node, node_idx: int):
|
||||
def _assign_sum_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for sum op.
|
||||
|
||||
|
@ -466,11 +517,46 @@ class TraceIndice(object):
|
|||
self._add_dim(node_idx, 0)
|
||||
self._assign_indice_as_input(node, node_idx, input_node=nodes_in[0])
|
||||
for n in nodes_in[1:]:
|
||||
self._mark_computation_from_node(n, node)
|
||||
self._inherit_more_indice_from_node(n, node)
|
||||
cat_dim = node.kwargs["dim"]
|
||||
self._del_dim(node_idx, cat_dim)
|
||||
|
||||
def _assign_getitem_indice(self, node: Node, node_idx: int):
|
||||
def _assign_arange_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for arange op.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_all_indice(node, node_idx)
|
||||
|
||||
def _assign_tensor_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for tensor op.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
if len(get_node_shape(node)) == 0:
|
||||
return
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _assign_embedding_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for embedding op.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._del_dim(node_idx, -1)
|
||||
self._assign_indice_as_input(node, node_idx)
|
||||
self._add_dim(node_idx, -1)
|
||||
|
||||
def _assign_getitem_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for getitem.
|
||||
getitem can act like slice sometimes
|
||||
|
@ -480,6 +566,19 @@ class TraceIndice(object):
|
|||
node_idx (int)
|
||||
"""
|
||||
node_args = flat_list(node.args[1:])
|
||||
|
||||
# deal with split
|
||||
if get_node_name(node.args[0]) == "split":
|
||||
self._assign_indice_as_input(node, node_idx)
|
||||
self._del_dim(node_idx, node.args[0].kwargs["dim"])
|
||||
self._add_dim(node_idx, node.args[0].kwargs["dim"])
|
||||
return
|
||||
|
||||
# skip non tensor
|
||||
if get_node_shape(node) is None:
|
||||
return
|
||||
|
||||
# find if slice
|
||||
flag = False
|
||||
for node_arg in node_args:
|
||||
node_arg_str = str(node_arg)
|
||||
|
@ -528,7 +627,7 @@ class TraceIndice(object):
|
|||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _assign_view_reshape_indice(self, node: Node, node_idx: int):
|
||||
def _assign_view_reshape_indice(self, node: Node, node_idx: int) -> None:
|
||||
"""
|
||||
Assign indice for view and reshape op.
|
||||
1. get origin shape and target shape by meta info.
|
||||
|
@ -536,7 +635,7 @@ class TraceIndice(object):
|
|||
3. determine changed dim, and assgin indice for generated dim.
|
||||
4. log changed dim and generated dim for restore
|
||||
5. inherit computation.
|
||||
6. TODO: look into view list to see whether the view is associated with other,
|
||||
6. look into view list to see whether the view is associated with other,
|
||||
if so assgin equal dim according to previous view.
|
||||
|
||||
Args:
|
||||
|
@ -552,7 +651,7 @@ class TraceIndice(object):
|
|||
if isinstance(unflated_args[i], int):
|
||||
target_shape.append(unflated_args[i])
|
||||
else:
|
||||
target_shape.append(unflated_args[i].meta["fwd_out"][0])
|
||||
target_shape.extend(unflated_args[i].meta["fwd_out"])
|
||||
|
||||
# compute the value of -1
|
||||
if -1 in target_shape:
|
||||
|
@ -579,17 +678,36 @@ class TraceIndice(object):
|
|||
dim_from = [dim_equal.index(False)]
|
||||
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
|
||||
self._del_dim(node_idx, -1)
|
||||
elif len_diff == 0:
|
||||
# dim equal
|
||||
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
|
||||
dim_from = []
|
||||
dim_to = []
|
||||
else:
|
||||
raise NotImplementedError("shape" + str(origin_shape) + "and" + str(target_shape) + "view not implemented")
|
||||
|
||||
# get new indice
|
||||
origin_trace = self._find_indice_trace_from_node(origin_node)
|
||||
self._assign_indice_as_input(node, node_idx, origin_node)
|
||||
idx_from = [origin_trace[i] for i in dim_from]
|
||||
dim_from.reverse()
|
||||
for i in dim_from:
|
||||
self._del_dim(node_idx, i)
|
||||
for i in dim_to:
|
||||
self._add_dim(node_idx, i)
|
||||
dim_from.reverse()
|
||||
|
||||
# search view list
|
||||
for view_node, view_dict in self.indice_view_list.items():
|
||||
if (view_dict["idx_to"] == idx_from and view_dict["dim_to"] == dim_from
|
||||
and view_dict["dim_from"] == dim_to):
|
||||
# inheirt indice from current node
|
||||
for dim_to_i in dim_to:
|
||||
for dim_from_i in dim_from:
|
||||
self._inherit_indice(origin_node, dim_from_i, node, dim_to_i, init=False)
|
||||
# inherid indice from input node of last view
|
||||
for dim_to_i in dim_to:
|
||||
self._inherit_indice(view_node.args[0], dim_to_i, node, dim_to_i, init=False)
|
||||
|
||||
# inherit computation
|
||||
compute_log = self._find_compute_trace_from_node(origin_node)
|
||||
|
@ -630,7 +748,7 @@ class TraceIndice(object):
|
|||
# clear compute
|
||||
for dim_compute in trace["compute"]:
|
||||
for i in range(len(dim_compute) - 1, -1, -1):
|
||||
if dim_compute[i] < trace_range[0] and dim_compute[i] not in active_nodes:
|
||||
if (dim_compute[i] < trace_range[0] and dim_compute[i] not in active_nodes):
|
||||
dim_compute.pop(i)
|
||||
continue
|
||||
# clear source
|
||||
|
@ -639,59 +757,82 @@ class TraceIndice(object):
|
|||
if k < trace_range[0] and k not in active_nodes:
|
||||
dim_source.pop(k)
|
||||
|
||||
def trace_indice(self):
|
||||
def trace_indice(self) -> None:
|
||||
for idx, node in enumerate(self.node_list):
|
||||
node_name = get_node_name(node)
|
||||
if node.op == "placeholder":
|
||||
self._assign_all_indice(node, idx)
|
||||
elif node.op == "call_method":
|
||||
if "transpose" in node.name:
|
||||
if "transpose" == node_name:
|
||||
self._assign_transpose_indice(node, idx)
|
||||
elif "permute" in node.name:
|
||||
elif "permute" == node_name:
|
||||
self._assign_permute_indice(node, idx)
|
||||
elif "view" in node.name or "reshape" in node.name:
|
||||
elif "view" == node_name or "reshape" == node_name:
|
||||
self._assign_view_reshape_indice(node, idx)
|
||||
elif "unsqueeze" in node.name:
|
||||
elif "unsqueeze" == node_name:
|
||||
self._assign_unsqueeze_indice(node, idx)
|
||||
elif any(i in node.name for i in ["to", "contiguous", "clone"]):
|
||||
elif "split" == node_name:
|
||||
self._assign_split_indice(node, idx)
|
||||
elif any(i == node_name for i in ["to", "contiguous", "clone", "type"]):
|
||||
self._assgin_no_change_indice(node, idx)
|
||||
elif "new_ones" in node.name:
|
||||
elif "new_ones" == node_name:
|
||||
self._assign_ones_like_indice(node, idx)
|
||||
else:
|
||||
raise NotImplementedError(node.name, "method not implemented yet!")
|
||||
elif node.op == "call_function":
|
||||
if "linear" in node.name:
|
||||
self._assign_linear_indice(node, idx)
|
||||
elif "cat" in node.name:
|
||||
self._assign_cat_indice(node, idx)
|
||||
elif "matmul" in node.name:
|
||||
self._assign_matmul_indice(node, idx)
|
||||
elif "softmax" in node.name:
|
||||
self._assign_softmax_indice(node, idx)
|
||||
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu", "sub", "truediv"]):
|
||||
self._assign_elementwise_indice(node, idx)
|
||||
elif "ones_like" in node.name:
|
||||
self._assign_ones_like_indice(node, idx)
|
||||
elif "dropout" in node.name:
|
||||
self._assign_dropout_indice(node, idx)
|
||||
elif "einsum" in node.name:
|
||||
self._assign_einsum_indice(node, idx)
|
||||
elif "sum" in node.name:
|
||||
self._assign_sum_indice(node, idx)
|
||||
elif "layer_norm" in node.name:
|
||||
self._assign_layernorm_indice(node, idx)
|
||||
elif "getitem" in node.name:
|
||||
self._assign_getitem_indice(node, idx)
|
||||
elif any(i in node.name for i in ["getattr", "getitem", "eq", "_assert"]):
|
||||
elif any(i == node_name for i in ["size"]):
|
||||
continue
|
||||
else:
|
||||
raise NotImplementedError(node.name, "function not implemented yet!")
|
||||
elif node.op == "call_module":
|
||||
if any(n in node.name for n in ["layernorm", "norm"]):
|
||||
raise NotImplementedError(node_name, "method not implemented yet!")
|
||||
elif node.op == "call_function":
|
||||
if "linear" == node_name:
|
||||
self._assign_linear_indice(node, idx)
|
||||
elif "cat" == node_name:
|
||||
self._assign_cat_indice(node, idx)
|
||||
elif "matmul" == node_name:
|
||||
self._assign_matmul_indice(node, idx)
|
||||
elif "softmax" == node_name:
|
||||
self._assign_softmax_indice(node, idx)
|
||||
elif any(n == node_name for n in [
|
||||
"mul",
|
||||
"add",
|
||||
"sigmoid",
|
||||
"relu",
|
||||
"sub",
|
||||
"truediv",
|
||||
"pow",
|
||||
"dropout",
|
||||
"where",
|
||||
"tanh",
|
||||
]):
|
||||
self._assign_elementwise_indice(node, idx)
|
||||
elif "ones_like" == node_name:
|
||||
self._assign_ones_like_indice(node, idx)
|
||||
elif "einsum" == node_name:
|
||||
self._assign_einsum_indice(node, idx)
|
||||
elif "sum" == node_name:
|
||||
self._assign_sum_indice(node, idx)
|
||||
elif "layer_norm" == node_name:
|
||||
self._assign_layernorm_indice(node, idx)
|
||||
elif any(n in node.name for n in ["sigmoid", "dropout", "relu"]):
|
||||
elif "getitem" == node_name:
|
||||
self._assign_getitem_indice(node, idx)
|
||||
elif "addmm" == node_name:
|
||||
self._assign_addmm_indice(node, idx)
|
||||
elif "arange" == node_name:
|
||||
self._assign_arange_indice(node, idx)
|
||||
elif "tensor" == node_name:
|
||||
self._assign_arange_indice(node, idx)
|
||||
elif any(i == node_name for i in ["getattr", "eq", "_assert_is_none", "_assert", "finfo"]):
|
||||
continue
|
||||
else:
|
||||
raise NotImplementedError(node_name, "function not implemented yet!")
|
||||
elif node.op == "call_module":
|
||||
node_name = get_module_node_name(node)
|
||||
if "layernorm" == node_name:
|
||||
self._assign_layernorm_indice(node, idx)
|
||||
elif "embedding" == node_name:
|
||||
self._assign_embedding_indice(node, idx)
|
||||
elif any(n == node_name for n in ["sigmoid", "dropout", "relu"]):
|
||||
self._assign_elementwise_indice(node, idx)
|
||||
else:
|
||||
raise NotImplementedError(node.name, "module not implemented yet!")
|
||||
raise NotImplementedError(node_name, "module not implemented yet!")
|
||||
elif node.op == "get_attr":
|
||||
self._assign_all_indice(node, idx) # get param
|
||||
elif node.op == "output":
|
||||
|
|
|
@ -1,13 +1,15 @@
|
|||
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
||||
from typing import Any, Callable, Dict, Iterable, List, Tuple, Union
|
||||
|
||||
from torch.fx.node import Node
|
||||
|
||||
from colossalai.logging import get_dist_logger
|
||||
|
||||
NON_COMPUTE_OP = ["placeholder", "get_attr", "output"]
|
||||
NON_COMPUTE_NAME = ["getattr", "eq", "_assert_is_none", "_assert", "finfo", "size"]
|
||||
logger = get_dist_logger()
|
||||
|
||||
|
||||
def get_logger():
|
||||
def get_logger() -> Any:
|
||||
return logger
|
||||
|
||||
|
||||
|
@ -37,7 +39,7 @@ def find_first_tensor_arg(node: Node) -> Node:
|
|||
|
||||
|
||||
def is_non_compute_node(node: Node) -> bool:
|
||||
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(i in node.name for i in ["getattr"]):
|
||||
if any(i == node.op for i in NON_COMPUTE_OP) or any(i == get_node_name(node) for i in NON_COMPUTE_NAME):
|
||||
return True
|
||||
if "getitem" in node.name:
|
||||
node_args = flat_list(node.args[1:])
|
||||
|
@ -64,33 +66,33 @@ def is_non_memory_node(node: Node) -> bool:
|
|||
return is_non_compute_node(node)
|
||||
|
||||
|
||||
def is_non_compute_node_except_placeholder(node):
|
||||
def is_non_compute_node_except_placeholder(node: Node) -> bool:
|
||||
if "placeholder" in node.op:
|
||||
return False
|
||||
return is_non_compute_node(node)
|
||||
|
||||
|
||||
def is_non_compute_node_except_placeholder_output(node):
|
||||
def is_non_compute_node_except_placeholder_output(node: Node) -> bool:
|
||||
if "output" in node.op:
|
||||
return False
|
||||
return is_non_compute_node_except_placeholder(node)
|
||||
|
||||
|
||||
def find_idx_by_name(name, nodes_list):
|
||||
def find_idx_by_name(name: str, nodes_list: List) -> int:
|
||||
for idx, node in enumerate(nodes_list):
|
||||
if node.name == name:
|
||||
return idx
|
||||
raise RuntimeError("name %s not found in node list" % name)
|
||||
|
||||
|
||||
def delete_free_var_from_last_use(user_to_last_uses):
|
||||
def delete_free_var_from_last_use(user_to_last_uses: Dict) -> None:
|
||||
for key, value in user_to_last_uses.items():
|
||||
for n in value:
|
||||
if n.op == "placeholder":
|
||||
user_to_last_uses[key].remove(n)
|
||||
|
||||
|
||||
def find_chunk_all_input_nodes(nodes: List[Node]):
|
||||
def find_chunk_all_input_nodes(nodes: List[Node]) -> List:
|
||||
"""
|
||||
Find non-compute input and output node names.
|
||||
input nodes are nodes used in the list
|
||||
|
@ -104,7 +106,7 @@ def find_chunk_all_input_nodes(nodes: List[Node]):
|
|||
return input_nodes
|
||||
|
||||
|
||||
def find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
|
||||
def find_chunk_compute_input_and_output_nodes(nodes: List[Node]) -> Union[List, List]:
|
||||
"""
|
||||
Find non-compute input and output node names.
|
||||
input nodes are nodes used in the list
|
||||
|
@ -130,3 +132,33 @@ def find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
|
|||
output_nodes.append(node)
|
||||
|
||||
return input_nodes, output_nodes
|
||||
|
||||
|
||||
def get_module_node_name(node: Node) -> str:
|
||||
"""
|
||||
get module class name
|
||||
"""
|
||||
node_targets = node.target.split(".")
|
||||
module = node.graph.owning_module
|
||||
for i in node_targets:
|
||||
module = getattr(module, i)
|
||||
module_name = str(module.__class__).split(".")[-1][:-2]
|
||||
module_name = module_name.lower()
|
||||
return module_name
|
||||
|
||||
|
||||
def get_node_name(node: Node) -> str:
|
||||
"""
|
||||
get node name
|
||||
"""
|
||||
node_name = node.name
|
||||
if "_" in node_name:
|
||||
for i in range(len(node_name) - 1, -1, -1):
|
||||
if node_name[i] == "_":
|
||||
node_name = node_name[:i]
|
||||
break
|
||||
elif node_name[i] in ["1", "2", "3", "4", "5", "6", "7", "8", "9", "0"]:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
return node_name
|
||||
|
|
|
@ -1,94 +0,0 @@
|
|||
import time
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
from simple_evoformer import base_evoformer, openfold_evoformer
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx import ColoTracer
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
|
||||
|
||||
def _benchmark_evoformer(model: torch.nn.Module, node, pair, title, chunk_size=None):
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
|
||||
loop = 3
|
||||
with torch.no_grad():
|
||||
for _ in range(loop // 2 + 1):
|
||||
if chunk_size:
|
||||
model(node, pair, chunk_size)
|
||||
else:
|
||||
model(node, pair)
|
||||
torch.cuda.synchronize()
|
||||
time1 = time.time()
|
||||
for _ in range(loop):
|
||||
if chunk_size:
|
||||
model(node, pair, chunk_size)
|
||||
else:
|
||||
model(node, pair)
|
||||
torch.cuda.synchronize()
|
||||
time2 = time.time()
|
||||
|
||||
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
print("%s: time %.4fs, mem %dMB" % (title, (time2 - time1) / loop, new_max_mem - now_mem))
|
||||
|
||||
|
||||
def _build_autochunk(model, max_memory, node, pair):
|
||||
# trace the module and replace codegen
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"node": node.to(torch.device("meta")),
|
||||
"pair": pair.to(torch.device("meta")),
|
||||
},
|
||||
)
|
||||
|
||||
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
|
||||
interp = MetaInfoProp(gm_prop)
|
||||
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
|
||||
|
||||
# now run it twice to get meta info in graph module, not necessary
|
||||
gm = torch.fx.GraphModule(model, graph)
|
||||
interp = MetaInfoProp(gm)
|
||||
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
|
||||
|
||||
# set code_gen
|
||||
codegen = AutoChunkCodeGen(gm_prop, max_memory, print_mem=False)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
gm.recompile()
|
||||
|
||||
# print
|
||||
# code = graph.python_code("self").src
|
||||
# print(code)
|
||||
return gm
|
||||
|
||||
|
||||
def benchmark_evoformer():
|
||||
# init data and model
|
||||
msa_len = 128
|
||||
pair_len = 256
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
model = base_evoformer().cuda()
|
||||
|
||||
# build autochunk model
|
||||
# max_memory = 1000 # MB, fit memory mode
|
||||
max_memory = None # min memory mode
|
||||
autochunk = _build_autochunk(base_evoformer().cuda(), max_memory, node, pair)
|
||||
|
||||
# build openfold
|
||||
chunk_size = 64
|
||||
openfold = openfold_evoformer().cuda()
|
||||
|
||||
# benchmark
|
||||
_benchmark_evoformer(model, node, pair, "base")
|
||||
_benchmark_evoformer(openfold, node, pair, "openfold", chunk_size=chunk_size)
|
||||
_benchmark_evoformer(autochunk, node, pair, "autochunk")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
benchmark_evoformer()
|
|
@ -0,0 +1,122 @@
|
|||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.autochunk.utils import flat_list
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def assert_codegen_run(
|
||||
model: Any,
|
||||
meta_args: List,
|
||||
concrete_args: List = None,
|
||||
max_memory: int = None,
|
||||
print_mem: bool = False,
|
||||
print_progress: bool = False,
|
||||
print_code: bool = False,
|
||||
) -> List[Dict]:
|
||||
if concrete_args is None:
|
||||
concrete_args = []
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
chunks = codegen.chunk_infos
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert chunk in code
|
||||
code = graph.python_code("self").src
|
||||
if print_code:
|
||||
print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
# assert result
|
||||
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
||||
model.cuda()
|
||||
with torch.no_grad():
|
||||
out_gm = gm(*inputs)
|
||||
out_model = model(*inputs)
|
||||
out_gm = flat_list(out_gm)
|
||||
out_model = flat_list(out_model)
|
||||
for out_gm_i, out_model_i in zip(out_gm, out_model):
|
||||
assert torch.allclose(out_gm_i, out_model_i,
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(out_gm_i - out_model_i))
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def run_test(
|
||||
rank: int,
|
||||
data_args: tuple,
|
||||
max_memory: int,
|
||||
get_model: Any,
|
||||
get_data: Any,
|
||||
print_code: bool,
|
||||
print_mem: bool,
|
||||
print_progress: bool,
|
||||
get_chunk_target: Any = None,
|
||||
) -> None:
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = get_model()
|
||||
meta_args, concrete_args = get_data(*data_args)
|
||||
chunks = assert_codegen_run(
|
||||
model,
|
||||
meta_args=meta_args,
|
||||
concrete_args=concrete_args,
|
||||
max_memory=max_memory,
|
||||
print_code=print_code,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
if get_chunk_target is not None:
|
||||
chunk_found = [i["region"] for i in chunks]
|
||||
chunk_target = get_chunk_target()[max_memory]
|
||||
assert chunk_found == chunk_target, "found regions %s doesn't equal target regions %s" % (
|
||||
str(chunk_found),
|
||||
str(chunk_target),
|
||||
)
|
|
@ -0,0 +1,95 @@
|
|||
from functools import partial
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import EvoformerBlock
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
from test_alphafold_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
|
||||
def get_model():
|
||||
model = EvoformerBlock(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.15,
|
||||
inf=1e4,
|
||||
eps=1e-4,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def get_data(msa_len: int, pair_len: int) -> Tuple[List, List]:
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
meta_args = [
|
||||
("m", node),
|
||||
("z", pair),
|
||||
("msa_mask", node_mask),
|
||||
("pair_mask", pair_mask),
|
||||
]
|
||||
concrete_args = [("chunk_size", None), ("_mask_trans", True)]
|
||||
return meta_args, concrete_args
|
||||
|
||||
|
||||
def get_chunk_target() -> Dict:
|
||||
return {
|
||||
None: [(118, 123), (219, 237), (264, 289), (302, 309), (97, 104), (144, 152), (185, 193), (241, 242), (21, 46)],
|
||||
20: [(118, 123), (230, 237), (275, 282), (305, 306), (100, 101), (32, 39), (73, 79)],
|
||||
24: [(118, 123)],
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 20, 24])
|
||||
@pytest.mark.parametrize("data_args", [(32, 64)]) # (msa_len, pair_len)
|
||||
def test_evoformer_block(data_args, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
data_args=data_args,
|
||||
max_memory=max_memory,
|
||||
get_model=get_model,
|
||||
get_data=get_data,
|
||||
get_chunk_target=get_chunk_target,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data_args=(32, 64),
|
||||
max_memory=20,
|
||||
get_model=get_model,
|
||||
get_data=get_data,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
|
@ -0,0 +1,90 @@
|
|||
from functools import partial
|
||||
from typing import List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import EvoformerStack
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
from test_alphafold_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
|
||||
def get_model():
|
||||
model = EvoformerStack(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
c_s=384,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
no_blocks=2, # 48
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.25,
|
||||
blocks_per_ckpt=None,
|
||||
inf=1000000000.0,
|
||||
eps=1e-08,
|
||||
clear_cache_between_blocks=False,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def get_data(msa_len: int, pair_len: int) -> Tuple[List, List]:
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
meta_args = [
|
||||
("m", node),
|
||||
("z", pair),
|
||||
("msa_mask", node_mask),
|
||||
("pair_mask", pair_mask),
|
||||
]
|
||||
concrete_args = [("chunk_size", None), ("_mask_trans", True)]
|
||||
return meta_args, concrete_args
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 20, 24])
|
||||
@pytest.mark.parametrize("data_args", [(32, 64)]) # (msa_len, pair_len)
|
||||
def test_evoformer_stack(data_args, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
data_args=data_args,
|
||||
max_memory=max_memory,
|
||||
get_model=get_model,
|
||||
get_data=get_data,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data_args=(32, 64),
|
||||
max_memory=20,
|
||||
get_model=get_model,
|
||||
get_data=get_data,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
|
@ -0,0 +1,96 @@
|
|||
from functools import partial
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import ExtraMSABlock
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
from test_alphafold_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
|
||||
def get_model():
|
||||
model = ExtraMSABlock(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.15,
|
||||
inf=1e4,
|
||||
eps=1e-4,
|
||||
ckpt=False,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def get_data(msa_len: int, pair_len: int) -> Tuple[List, List]:
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
meta_args = [
|
||||
("m", node),
|
||||
("z", pair),
|
||||
("msa_mask", node_mask),
|
||||
("pair_mask", pair_mask),
|
||||
]
|
||||
concrete_args = [("chunk_size", None), ("_chunk_logits", 1024)]
|
||||
return meta_args, concrete_args
|
||||
|
||||
|
||||
def get_chunk_target() -> Dict:
|
||||
return {
|
||||
None: [(126, 131), (227, 245), (272, 297), (310, 317), (105, 112), (152, 160), (193, 201), (249, 250),
|
||||
(33, 46)],
|
||||
20: [(126, 131), (238, 245), (283, 290), (313, 314), (108, 109), (35, 46)],
|
||||
24: [(126, 131)],
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 20, 24])
|
||||
@pytest.mark.parametrize("data_args", [(32, 64)]) # (msa_len, pair_len)
|
||||
def test_extramsa_block(data_args, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
data_args=data_args,
|
||||
max_memory=max_memory,
|
||||
get_model=get_model,
|
||||
get_data=get_data,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data_args=(32, 64),
|
||||
max_memory=20,
|
||||
get_model=get_model,
|
||||
get_data=get_data,
|
||||
get_chunk_target=get_chunk_target,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
|
@ -0,0 +1,120 @@
|
|||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def assert_codegen_run(
|
||||
model: Any,
|
||||
meta_args: List,
|
||||
concrete_args: List = None,
|
||||
max_memory: int = None,
|
||||
print_mem: bool = False,
|
||||
print_progress: bool = False,
|
||||
print_code: bool = False,
|
||||
) -> List[Dict]:
|
||||
if concrete_args is None:
|
||||
concrete_args = []
|
||||
model = model()
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
chunks = codegen.chunk_infos
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model.cuda(),
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
|
||||
concrete_args={k: v for k, v in concrete_args},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert chunk in code
|
||||
code = graph.python_code("self").src
|
||||
if print_code:
|
||||
print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
# assert result
|
||||
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
|
||||
model.cuda().eval()
|
||||
gm.eval()
|
||||
with torch.no_grad():
|
||||
out_gm = gm(*inputs)
|
||||
out_model = model(*inputs)
|
||||
assert torch.allclose(out_gm["sample"], out_model["sample"],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(out_gm["sample"] - out_model["sample"]))
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def run_test(
|
||||
rank: int,
|
||||
model: Any,
|
||||
data: tuple,
|
||||
max_memory: int,
|
||||
print_code: bool,
|
||||
print_mem: bool,
|
||||
print_progress: bool,
|
||||
get_chunk_target: Any = None,
|
||||
) -> None:
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
meta_args, concrete_args = data
|
||||
chunks = assert_codegen_run(
|
||||
model,
|
||||
meta_args=meta_args,
|
||||
concrete_args=concrete_args,
|
||||
max_memory=max_memory,
|
||||
print_code=print_code,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
if get_chunk_target is not None:
|
||||
chunk_found = [i["region"] for i in chunks]
|
||||
chunk_target = get_chunk_target()[max_memory]
|
||||
assert (chunk_found == chunk_target), "found regions %s doesn't equal target regions %s" % (
|
||||
str(chunk_found),
|
||||
str(chunk_target),
|
||||
)
|
||||
|
||||
gpc.destroy()
|
|
@ -0,0 +1,70 @@
|
|||
from functools import partial
|
||||
from typing import List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from diffusers import UNet2DModel
|
||||
MODELS = [UNet2DModel]
|
||||
HAS_REPO = True
|
||||
except:
|
||||
MODELS = []
|
||||
HAS_REPO = False
|
||||
|
||||
from test_diffuser_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 5
|
||||
HEIGHT = 224
|
||||
WIDTH = 224
|
||||
IN_CHANNELS = 3
|
||||
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
|
||||
|
||||
|
||||
def get_data(shape: tuple) -> Tuple[List, List]:
|
||||
sample = torch.randn(shape)
|
||||
meta_args = [
|
||||
("sample", sample),
|
||||
]
|
||||
concrete_args = [("timestep", 50)]
|
||||
return meta_args, concrete_args
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
True,
|
||||
reason="not implemented",
|
||||
)
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("shape", [LATENTS_SHAPE])
|
||||
@pytest.mark.parametrize("max_memory", [64])
|
||||
def test_evoformer_block(model, shape, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
max_memory=max_memory,
|
||||
model=model,
|
||||
data=get_data(shape),
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data=get_data(LATENTS_SHAPE),
|
||||
max_memory=64,
|
||||
model=UNet2DModel,
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
|
@ -1,163 +0,0 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import EvoformerBlock
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if CODEGEN_AVAILABLE and is_compatible_with_meta():
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair, node_mask, pair_mask):
|
||||
# for memory test
|
||||
# model = model.cuda()
|
||||
# torch.cuda.reset_peak_memory_stats()
|
||||
# now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
# with torch.no_grad():
|
||||
# node1 = node.clone()
|
||||
# pair1 = pair.clone()
|
||||
# node_mask1 = node_mask.clone()
|
||||
# pair_mask1 = pair_mask.clone()
|
||||
# gm(node1, pair1, node_mask1, pair_mask1)
|
||||
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
# print("autochunk max mem:%.2f"% (new_max_mem - now_mem))
|
||||
|
||||
# test forward
|
||||
model = model.cuda()
|
||||
with torch.no_grad():
|
||||
non_fx_out = model(node, pair, node_mask, pair_mask)
|
||||
fx_out = gm(node, pair, node_mask, pair_mask)
|
||||
|
||||
assert torch.allclose(non_fx_out[0], fx_out[0],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[0] - fx_out[0]))
|
||||
assert torch.allclose(non_fx_out[1], fx_out[1],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[1] - fx_out[1]))
|
||||
|
||||
|
||||
def _build_openfold():
|
||||
model = EvoformerBlock(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.15,
|
||||
inf=1e4,
|
||||
eps=1e-4,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def _test_evoformer_codegen(rank, msa_len, pair_len, max_memory):
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = _build_openfold()
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_mask_trans": True,
|
||||
},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(
|
||||
MetaTensor(node, fake_device="cuda:0"),
|
||||
MetaTensor(pair, fake_device="cuda:0"),
|
||||
MetaTensor(node_mask, fake_device="cuda:0"),
|
||||
MetaTensor(pair_mask, fake_device="cuda:0"),
|
||||
)
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory, print_mem=False)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_mask_trans": True,
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
code = graph.python_code("self").src
|
||||
# print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
_test_fwd(model, gm, node, pair, node_mask, pair_mask)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 24, 28, 32])
|
||||
@pytest.mark.parametrize("msa_len", [32])
|
||||
@pytest.mark.parametrize("pair_len", [64])
|
||||
def test_evoformer_codegen(msa_len, pair_len, max_memory):
|
||||
run_func = partial(
|
||||
_test_evoformer_codegen,
|
||||
msa_len=msa_len,
|
||||
pair_len=pair_len,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_evoformer_codegen(0, 32, 64, 24)
|
|
@ -1,163 +0,0 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import EvoformerStack
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if CODEGEN_AVAILABLE and is_compatible_with_meta():
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair, node_mask, pair_mask):
|
||||
# for memory test
|
||||
# model = model.cuda()
|
||||
# torch.cuda.reset_peak_memory_stats()
|
||||
# now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
# with torch.no_grad():
|
||||
# node1 = node.clone()
|
||||
# pair1 = pair.clone()
|
||||
# node_mask1 = node_mask.clone()
|
||||
# pair_mask1 = pair_mask.clone()
|
||||
# gm(node1, pair1, node_mask1, pair_mask1, None)
|
||||
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
# print("autochunk max mem:%.2f"% (new_max_mem - now_mem))
|
||||
|
||||
# test forward
|
||||
model = model.cuda()
|
||||
with torch.no_grad():
|
||||
non_fx_out = model(node, pair, node_mask, pair_mask, None)
|
||||
fx_out = gm(node, pair, node_mask, pair_mask, None)
|
||||
|
||||
assert torch.allclose(non_fx_out[0], fx_out[0],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[0] - fx_out[0]))
|
||||
assert torch.allclose(non_fx_out[1], fx_out[1],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[1] - fx_out[1]))
|
||||
|
||||
|
||||
def _build_openfold():
|
||||
model = EvoformerStack(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
c_s=384,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
no_blocks=2, # 48
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.25,
|
||||
blocks_per_ckpt=None,
|
||||
inf=1000000000.0,
|
||||
eps=1e-08,
|
||||
clear_cache_between_blocks=False,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def _test_evoformer_stack_codegen(rank, msa_len, pair_len, max_memory):
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = _build_openfold()
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_mask_trans": True,
|
||||
},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"),
|
||||
MetaTensor(node_mask, fake_device="cuda:0"), MetaTensor(pair_mask, fake_device="cuda:0"), None)
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory, print_mem=False, print_progress=False)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_mask_trans": True,
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
code = graph.python_code("self").src
|
||||
# print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
_test_fwd(model, gm, node, pair, node_mask, pair_mask)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 24, 28, 32])
|
||||
@pytest.mark.parametrize("msa_len", [32])
|
||||
@pytest.mark.parametrize("pair_len", [64])
|
||||
def test_evoformer_stack_codegen(msa_len, pair_len, max_memory):
|
||||
run_func = partial(
|
||||
_test_evoformer_stack_codegen,
|
||||
msa_len=msa_len,
|
||||
pair_len=pair_len,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_evoformer_stack_codegen(0, 32, 64, None)
|
|
@ -1,164 +0,0 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from fastfold.model.nn.evoformer import ExtraMSABlock
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if CODEGEN_AVAILABLE and is_compatible_with_meta():
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair, node_mask, pair_mask):
|
||||
# for memory test
|
||||
# model = model.cuda()
|
||||
# torch.cuda.reset_peak_memory_stats()
|
||||
# now_mem = torch.cuda.memory_allocated() / 1024**2
|
||||
# with torch.no_grad():
|
||||
# node1 = node.clone()
|
||||
# pair1 = pair.clone()
|
||||
# node_mask1 = node_mask.clone()
|
||||
# pair_mask1 = pair_mask.clone()
|
||||
# gm(node1, pair1, node_mask1, pair_mask1)
|
||||
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
|
||||
# print("autochunk max mem:%.2f"% (new_max_mem - now_mem))
|
||||
|
||||
# test forward
|
||||
model = model.cuda()
|
||||
with torch.no_grad():
|
||||
non_fx_out = model(node, pair, node_mask, pair_mask)
|
||||
fx_out = gm(node, pair, node_mask, pair_mask)
|
||||
|
||||
assert torch.allclose(non_fx_out[0], fx_out[0],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[0] - fx_out[0]))
|
||||
assert torch.allclose(non_fx_out[1], fx_out[1],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[1] - fx_out[1]))
|
||||
|
||||
|
||||
def _build_openfold():
|
||||
model = ExtraMSABlock(
|
||||
c_m=256,
|
||||
c_z=128,
|
||||
c_hidden_msa_att=32,
|
||||
c_hidden_opm=32,
|
||||
c_hidden_mul=128,
|
||||
c_hidden_pair_att=32,
|
||||
no_heads_msa=8,
|
||||
no_heads_pair=4,
|
||||
transition_n=4,
|
||||
msa_dropout=0.15,
|
||||
pair_dropout=0.15,
|
||||
inf=1e4,
|
||||
eps=1e-4,
|
||||
ckpt=False,
|
||||
is_multimer=False,
|
||||
).eval().cuda()
|
||||
return model
|
||||
|
||||
|
||||
def _test_extramsa_codegen(rank, msa_len, pair_len, max_memory):
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = _build_openfold()
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
node_mask = torch.randn(1, msa_len, pair_len).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
pair_mask = torch.randn(1, pair_len, pair_len).cuda()
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_chunk_logits": 1024,
|
||||
},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(
|
||||
MetaTensor(node, fake_device="cuda:0"),
|
||||
MetaTensor(pair, fake_device="cuda:0"),
|
||||
MetaTensor(node_mask, fake_device="cuda:0"),
|
||||
MetaTensor(pair_mask, fake_device="cuda:0"),
|
||||
)
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory, print_mem=False)
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"m": node.to(torch.device("meta")),
|
||||
"z": pair.to(torch.device("meta")),
|
||||
"msa_mask": node_mask.to(torch.device("meta")),
|
||||
"pair_mask": pair_mask.to(torch.device("meta")),
|
||||
},
|
||||
concrete_args={
|
||||
"chunk_size": None,
|
||||
"_chunk_logits": 1024,
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
code = graph.python_code("self").src
|
||||
# print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
_test_fwd(model, gm, node, pair, node_mask, pair_mask)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("max_memory", [None, 24, 28, 32])
|
||||
@pytest.mark.parametrize("msa_len", [32])
|
||||
@pytest.mark.parametrize("pair_len", [64])
|
||||
def test_extramsa_codegen(msa_len, pair_len, max_memory):
|
||||
run_func = partial(
|
||||
_test_extramsa_codegen,
|
||||
msa_len=msa_len,
|
||||
pair_len=pair_len,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_extramsa_codegen(0, 32, 64, None)
|
|
@ -1,104 +0,0 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from simple_evoformer import base_evoformer
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx import ColoTracer, symbolic_trace
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if CODEGEN_AVAILABLE and is_compatible_with_meta():
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
|
||||
|
||||
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
|
||||
with torch.no_grad():
|
||||
non_fx_out = model(node, pair)
|
||||
fx_out = gm(node, pair)
|
||||
|
||||
assert torch.allclose(non_fx_out[0], fx_out[0],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[0] - fx_out[0]))
|
||||
assert torch.allclose(non_fx_out[1], fx_out[1],
|
||||
atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
|
||||
torch.abs(non_fx_out[1] - fx_out[1]))
|
||||
|
||||
|
||||
def _test_simple_evoformer_codegen(rank, msa_len, pair_len, max_memory):
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = base_evoformer().cuda()
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
|
||||
# meta info prop
|
||||
meta_graph = symbolic_trace(model,
|
||||
meta_args={
|
||||
"node": node.to(torch.device("meta")),
|
||||
"pair": pair.to(torch.device("meta")),
|
||||
}) # must use symbolic_trace
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory)
|
||||
|
||||
# trace the module and replace codegen
|
||||
graph = ColoTracer().trace(
|
||||
model,
|
||||
meta_args={
|
||||
"node": node.to(torch.device("meta")),
|
||||
"pair": pair.to(torch.device("meta")),
|
||||
},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert we have inserted chunk
|
||||
code = graph.python_code("self").src
|
||||
# print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
_test_fwd(model, gm, node, pair)
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skipif(not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
|
||||
reason='torch version is lower than 1.12.0')
|
||||
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
|
||||
@pytest.mark.parametrize("msa_len", [32])
|
||||
@pytest.mark.parametrize("pair_len", [64])
|
||||
def test_simple_evoformer_codegen(msa_len, pair_len, max_memory):
|
||||
run_func = partial(
|
||||
_test_simple_evoformer_codegen,
|
||||
msa_len=msa_len,
|
||||
pair_len=pair_len,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_simple_evoformer_codegen(0, 32, 64, 25)
|
|
@ -1,97 +0,0 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.fx
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from simple_evoformer import base_evoformer
|
||||
HAS_REPO = True
|
||||
except:
|
||||
HAS_REPO = False
|
||||
|
||||
import colossalai
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx import symbolic_trace
|
||||
from colossalai.fx._compatibility import is_compatible_with_meta
|
||||
from colossalai.fx.codegen.activation_checkpoint_codegen import CODEGEN_AVAILABLE
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if CODEGEN_AVAILABLE and is_compatible_with_meta():
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
|
||||
|
||||
def assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len):
|
||||
found_regions = [i["region"] for i in chunk_infos]
|
||||
|
||||
if msa_len == 32 and pair_len == 64:
|
||||
if max_memory is None:
|
||||
target_regions = [(142, 154), (366, 373), (234, 283), (302, 351), (127, 134), (211, 228), (174, 191),
|
||||
(161, 166), (198, 203), (7, 57)]
|
||||
elif max_memory == 20:
|
||||
target_regions = [(142, 154), (369, 373), (235, 269), (303, 351), (130, 131)]
|
||||
elif max_memory == 25:
|
||||
target_regions = [(144, 154), (369, 370)]
|
||||
elif max_memory == 30:
|
||||
target_regions = [(144, 154)]
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
assert found_regions == target_regions, "found regions %s doesn't equal target regions %s" % (
|
||||
str(found_regions),
|
||||
str(target_regions),
|
||||
)
|
||||
|
||||
|
||||
def _test_simple_evoformer_search(rank, msa_len, pair_len, max_memory):
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
model = base_evoformer().cuda()
|
||||
node = torch.randn(1, msa_len, pair_len, 256).cuda()
|
||||
pair = torch.randn(1, pair_len, pair_len, 128).cuda()
|
||||
|
||||
meta_graph = symbolic_trace(model,
|
||||
meta_args={
|
||||
"node": node.to(torch.device("meta")),
|
||||
"pair": pair.to(torch.device("meta")),
|
||||
}) # must use symbolic_trace
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
interp.propagate(MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0"))
|
||||
codegen = AutoChunkCodeGen(meta_graph, max_memory=max_memory)
|
||||
chunk_infos = codegen.chunk_infos
|
||||
assert_chunk_infos(chunk_infos, max_memory, msa_len, pair_len)
|
||||
|
||||
gpc.destroy()
|
||||
|
||||
|
||||
@pytest.mark.skipif(not (CODEGEN_AVAILABLE and is_compatible_with_meta() and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0")
|
||||
@pytest.mark.parametrize("max_memory", [None, 20, 25, 30])
|
||||
@pytest.mark.parametrize("msa_len", [32])
|
||||
@pytest.mark.parametrize("pair_len", [64])
|
||||
def test_simple_evoformer_search(msa_len, pair_len, max_memory):
|
||||
run_func = partial(
|
||||
_test_simple_evoformer_search,
|
||||
msa_len=msa_len,
|
||||
pair_len=pair_len,
|
||||
max_memory=max_memory,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
_test_simple_evoformer_search(0, 32, 64, 20)
|
|
@ -0,0 +1,65 @@
|
|||
from functools import partial
|
||||
from typing import List, Tuple
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
try:
|
||||
from transformers import GPT2Config, GPT2Model
|
||||
MODELS = [GPT2Model]
|
||||
HAS_REPO = True
|
||||
except:
|
||||
MODELS = []
|
||||
HAS_REPO = False
|
||||
|
||||
from test_transformer_utils import run_test
|
||||
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 256
|
||||
|
||||
|
||||
def get_data(shape: tuple) -> Tuple[List, List]:
|
||||
input_ids = torch.zeros(shape, dtype=torch.int64)
|
||||
token_type_ids = torch.zeros(shape, dtype=torch.int64)
|
||||
attention_mask = torch.ones(shape, dtype=torch.int64)
|
||||
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
||||
concrete_args = {"past_key_values": None}
|
||||
sequence = ["input_ids", "past_key_values", "attention_mask", "token_type_ids"]
|
||||
return meta_args, concrete_args, sequence
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||||
reason="torch version is lower than 1.12.0",
|
||||
)
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
@pytest.mark.parametrize("shape", [(BATCH_SIZE, SEQ_LENGTH)])
|
||||
@pytest.mark.parametrize("max_memory", [None, 4.5, 5])
|
||||
def test_gpt(model, shape, max_memory):
|
||||
run_func = partial(
|
||||
run_test,
|
||||
data=get_data(shape),
|
||||
max_memory=max_memory,
|
||||
model=model,
|
||||
config=GPT2Config(n_embd=96, n_position=shape[1], n_layer=2, n_head=4),
|
||||
print_code=False,
|
||||
print_mem=False,
|
||||
print_progress=False,
|
||||
)
|
||||
mp.spawn(run_func, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_test(
|
||||
rank=0,
|
||||
data=get_data((BATCH_SIZE, SEQ_LENGTH)),
|
||||
max_memory=None,
|
||||
model=GPT2Model,
|
||||
config=GPT2Config(n_embd=96, n_position=SEQ_LENGTH, n_layer=2, n_head=4),
|
||||
print_code=True,
|
||||
print_mem=True,
|
||||
print_progress=False,
|
||||
)
|
|
@ -0,0 +1,123 @@
|
|||
from typing import Any, Dict, List
|
||||
|
||||
import torch
|
||||
import torch.fx
|
||||
|
||||
import colossalai
|
||||
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.fx.graph_module import ColoGraphModule
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.utils import free_port
|
||||
|
||||
if AUTOCHUNK_AVAILABLE:
|
||||
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
|
||||
|
||||
|
||||
def assert_codegen_run(
|
||||
model: Any,
|
||||
data: tuple,
|
||||
max_memory: int = None,
|
||||
print_mem: bool = False,
|
||||
print_progress: bool = False,
|
||||
print_code: bool = False,
|
||||
) -> List[Dict]:
|
||||
meta_args, concrete_args, sequence = data
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
# trace the meta graph and setup codegen
|
||||
meta_graph = symbolic_trace(
|
||||
model,
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
interp = MetaInfoProp(meta_graph)
|
||||
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
|
||||
interp.propagate(*meta_tensors)
|
||||
codegen = AutoChunkCodeGen(
|
||||
meta_graph,
|
||||
max_memory=max_memory,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
chunks = codegen.chunk_infos
|
||||
|
||||
# trace and recompile
|
||||
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
|
||||
graph = ColoTracer().trace(
|
||||
model.cuda(),
|
||||
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
|
||||
concrete_args={k: v for k, v in concrete_args.items()},
|
||||
)
|
||||
graph.set_codegen(codegen)
|
||||
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
|
||||
gm.recompile()
|
||||
|
||||
# assert chunk in code
|
||||
code = graph.python_code("self").src
|
||||
if print_code:
|
||||
print(code)
|
||||
assert "chunk_result = None; chunk_size = None;" in code
|
||||
|
||||
# assert result
|
||||
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
|
||||
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
|
||||
model.cuda().eval()
|
||||
gm.eval()
|
||||
with torch.no_grad():
|
||||
out_gm = gm(*inputs)
|
||||
out_model = model(*inputs)
|
||||
for k in out_model.keys():
|
||||
if torch.is_tensor(out_gm[k]):
|
||||
assert torch.equal(
|
||||
out_model[k], out_gm[k]
|
||||
), f'{model.__class__.__name__} has incorrect output {k}, expect {out_model[k]}, but got {out_gm[k]}'
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def run_test(
|
||||
rank: int,
|
||||
model: Any,
|
||||
config: Any,
|
||||
data: tuple,
|
||||
max_memory: int,
|
||||
print_code: bool,
|
||||
print_mem: bool,
|
||||
print_progress: bool,
|
||||
get_chunk_target: Any = None,
|
||||
) -> None:
|
||||
model = model(config=config)
|
||||
# launch colossalai
|
||||
colossalai.launch(
|
||||
config={},
|
||||
rank=rank,
|
||||
world_size=1,
|
||||
host="localhost",
|
||||
port=free_port(),
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
# build model and input
|
||||
chunks = assert_codegen_run(
|
||||
model,
|
||||
data=data,
|
||||
max_memory=max_memory,
|
||||
print_code=print_code,
|
||||
print_mem=print_mem,
|
||||
print_progress=print_progress,
|
||||
)
|
||||
|
||||
if get_chunk_target is not None:
|
||||
chunk_found = [i["region"] for i in chunks]
|
||||
chunk_target = get_chunk_target()[max_memory]
|
||||
assert (chunk_found == chunk_target), "found regions %s doesn't equal target regions %s" % (
|
||||
str(chunk_found),
|
||||
str(chunk_target),
|
||||
)
|
||||
|
||||
gpc.destroy()
|
Loading…
Reference in New Issue