mirror of https://github.com/hpcaitech/ColossalAI
66 lines
1.8 KiB
Python
66 lines
1.8 KiB
Python
from functools import partial
|
|
from typing import List, Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
|
|
try:
|
|
from transformers import GPT2Config, GPT2Model
|
|
MODELS = [GPT2Model]
|
|
HAS_REPO = True
|
|
except:
|
|
MODELS = []
|
|
HAS_REPO = False
|
|
|
|
from test_transformer_utils import run_test
|
|
|
|
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
|
|
|
BATCH_SIZE = 2
|
|
SEQ_LENGTH = 256
|
|
|
|
|
|
def get_data(shape: tuple) -> Tuple[List, List]:
|
|
input_ids = torch.zeros(shape, dtype=torch.int64)
|
|
token_type_ids = torch.zeros(shape, dtype=torch.int64)
|
|
attention_mask = torch.ones(shape, dtype=torch.int64)
|
|
meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
|
|
concrete_args = {"past_key_values": None}
|
|
sequence = ["input_ids", "past_key_values", "attention_mask", "token_type_ids"]
|
|
return meta_args, concrete_args, sequence
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
|
reason="torch version is lower than 1.12.0",
|
|
)
|
|
@pytest.mark.parametrize("model", MODELS)
|
|
@pytest.mark.parametrize("shape", [(BATCH_SIZE, SEQ_LENGTH)])
|
|
@pytest.mark.parametrize("max_memory", [None, 4.5, 5])
|
|
def test_gpt(model, shape, max_memory):
|
|
run_func = partial(
|
|
run_test,
|
|
data=get_data(shape),
|
|
max_memory=max_memory,
|
|
model=model,
|
|
config=GPT2Config(n_embd=96, n_position=shape[1], n_layer=2, n_head=4),
|
|
print_code=False,
|
|
print_mem=False,
|
|
print_progress=False,
|
|
)
|
|
mp.spawn(run_func, nprocs=1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_test(
|
|
rank=0,
|
|
data=get_data((BATCH_SIZE, SEQ_LENGTH)),
|
|
max_memory=None,
|
|
model=GPT2Model,
|
|
config=GPT2Config(n_embd=96, n_position=SEQ_LENGTH, n_layer=2, n_head=4),
|
|
print_code=True,
|
|
print_mem=True,
|
|
print_progress=False,
|
|
)
|