|
|
@ -3,8 +3,9 @@ from torchvision.models import resnet50
|
|
|
|
from tqdm import tqdm
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
import colossalai
|
|
|
|
from colossalai.auto_parallel.tensor_shard.initialize import autoparallelize
|
|
|
|
from colossalai.auto_parallel.tensor_shard.initialize import initialize_model
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingLR
|
|
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingLR
|
|
|
|
|
|
|
|
|
|
|
@ -22,9 +23,14 @@ def main():
|
|
|
|
|
|
|
|
|
|
|
|
# trace the model with meta data
|
|
|
|
# trace the model with meta data
|
|
|
|
model = resnet50(num_classes=10).cuda()
|
|
|
|
model = resnet50(num_classes=10).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
input_sample = {'x': torch.rand([gpc.config.BATCH_SIZE * torch.distributed.get_world_size(), 3, 32, 32]).to('meta')}
|
|
|
|
input_sample = {'x': torch.rand([gpc.config.BATCH_SIZE * torch.distributed.get_world_size(), 3, 32, 32]).to('meta')}
|
|
|
|
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id=torch.tensor([0, 1, 2, 3]), mesh_shape=[2, 2], init_process_group=True)
|
|
|
|
|
|
|
|
model, solution = initialize_model(model, input_sample, device_mesh=device_mesh, return_solution=True)
|
|
|
|
|
|
|
|
|
|
|
|
model = autoparallelize(model, input_sample)
|
|
|
|
if gpc.get_global_rank() == 0:
|
|
|
|
|
|
|
|
for node_strategy in solution:
|
|
|
|
|
|
|
|
print(node_strategy)
|
|
|
|
# build criterion
|
|
|
|
# build criterion
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
|
|
|
|
|
|
|
@ -52,6 +58,7 @@ def main():
|
|
|
|
output = model(img)
|
|
|
|
output = model(img)
|
|
|
|
train_loss = criterion(output, label)
|
|
|
|
train_loss = criterion(output, label)
|
|
|
|
train_loss.backward(train_loss)
|
|
|
|
train_loss.backward(train_loss)
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
optimizer.step()
|
|
|
|
optimizer.step()
|
|
|
|
lr_scheduler.step()
|
|
|
|
lr_scheduler.step()
|
|
|
|
|
|
|
|
|
|
|
|