mirror of https://github.com/hpcaitech/ColossalAI
[pipeline]add pipeline policy and bert forward (#4130)
* add pipeline policy and bert forward to be done * add bertmodel pipeline forward and make tests * add Bert_Policy and test for policy * update formatting * update formatting * update the code * fix bugs * fix name confiltpull/4445/head
parent
f51ce1bc8e
commit
e8e7e49243
|
@ -0,0 +1,22 @@
|
|||
from typing import Any, Dict, List, Optional, Tuple, Type
|
||||
|
||||
from torch import Tensor
|
||||
from torch.nn import Module, Parameter
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
from .base import Policy
|
||||
from .bert import BertModel, BertModelPolicy
|
||||
|
||||
POLICY_MAP: Dict[Type[Module], Type[Policy]] = {
|
||||
BertModel: BertModelPolicy,
|
||||
}
|
||||
|
||||
|
||||
def pipeline_parallelize(
|
||||
model: Module,
|
||||
stage_manager: PipelineStageManager) -> Tuple[Dict[str, Parameter], Dict[str, Tensor], List[Dict[int, Tensor]]]:
|
||||
if type(model) not in POLICY_MAP:
|
||||
raise NotImplementedError(f"Policy for {type(model)} not implemented")
|
||||
policy = POLICY_MAP[type(model)](stage_manager)
|
||||
return policy.parallelize_model(model)
|
|
@ -0,0 +1,108 @@
|
|||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from colossalai.lazy import LazyTensor
|
||||
from torch import Tensor
|
||||
from torch.nn import Module, Parameter
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
|
||||
class Policy:
|
||||
def __init__(self, stage_manager: PipelineStageManager) -> None:
|
||||
self.stage_manager = stage_manager
|
||||
|
||||
def setup_model(self, module: Module) -> Tuple[Dict[str, Parameter], Dict[str, Tensor]]:
|
||||
"""Setup model for pipeline parallel
|
||||
|
||||
Args:
|
||||
module (Module): Module to be setup
|
||||
|
||||
Returns:
|
||||
Tuple[Dict[str, Parameter], Dict[str, Tensor]]: Hold parameters and buffers
|
||||
"""
|
||||
hold_params = set()
|
||||
hold_buffers = set()
|
||||
|
||||
def init_layer(layer: Module):
|
||||
for p in layer.parameters():
|
||||
if isinstance(p, LazyTensor):
|
||||
p.materialize()
|
||||
p.data = p.cuda()
|
||||
hold_params.add(p)
|
||||
for b in layer.buffers():
|
||||
if isinstance(b, LazyTensor):
|
||||
b.materialize()
|
||||
b.data = b.cuda()
|
||||
hold_buffers.add(b)
|
||||
|
||||
hold_layers = self.get_hold_layers(module)
|
||||
|
||||
for layer in hold_layers:
|
||||
init_layer(layer)
|
||||
|
||||
hold_params_dict = {}
|
||||
hold_buffers_dict = {}
|
||||
|
||||
# release other tensors
|
||||
for n, p in module.named_parameters():
|
||||
if p in hold_params:
|
||||
hold_params_dict[n] = p
|
||||
else:
|
||||
if isinstance(p, LazyTensor):
|
||||
p.materialize()
|
||||
p.data = p.cuda()
|
||||
p.storage().resize_(0)
|
||||
for n, b in module.named_buffers():
|
||||
if b in hold_buffers:
|
||||
hold_buffers_dict[n] = b
|
||||
else:
|
||||
if isinstance(b, LazyTensor):
|
||||
b.materialize()
|
||||
b.data = b.cuda()
|
||||
# FIXME(ver217): use meta tensor may be better
|
||||
b.storage().resize_(0)
|
||||
return hold_params_dict, hold_buffers_dict
|
||||
|
||||
def replace_forward(self, module: Module) -> None:
|
||||
"""Replace module forward in place. This method should be implemented by subclass. The output of internal layers must be a dict
|
||||
|
||||
Args:
|
||||
module (Module): _description_
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def get_hold_layers(self, module: Module) -> List[Module]:
|
||||
"""Get layers that should be hold in current stage. This method should be implemented by subclass.
|
||||
|
||||
Args:
|
||||
module (Module): Module to be setup
|
||||
|
||||
Returns:
|
||||
List[Module]: List of layers that should be hold in current stage
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def get_shared_params(self, module: Module) -> List[Dict[int, Tensor]]:
|
||||
"""Get parameters that should be shared across stages. This method should be implemented by subclass.
|
||||
|
||||
Args:
|
||||
module (Module): Module to be setup
|
||||
|
||||
Returns:
|
||||
List[Module]: List of parameters that should be shared across stages. E.g. [{0: module.model.embed_tokens.weight, 3: module.lm_head.weight}]
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def parallelize_model(self, module: Module) -> Tuple[Dict[str, Parameter], Dict[str, Tensor], List[Dict[int, Tensor]]]:
|
||||
"""Parallelize model for pipeline parallel
|
||||
|
||||
Args:
|
||||
module (Module): Module to be setup
|
||||
|
||||
Returns:
|
||||
Tuple[Dict[str, Parameter], Dict[str, Tensor], List[Dict[int, Tensor]]]: Hold parameters, buffers and shared parameters
|
||||
"""
|
||||
hold_params, hold_buffers = self.setup_model(module)
|
||||
self.replace_forward(module)
|
||||
shared_params = self.get_shared_params(module)
|
||||
return hold_params, hold_buffers, shared_params
|
|
@ -0,0 +1,390 @@
|
|||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import CrossEntropyLoss, Module
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
)
|
||||
from transformers.models.bert.modeling_bert import BertForPreTraining, BertForPreTrainingOutput, BertModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
from .base import Policy
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def bert_model_forward(
|
||||
self: BertModel,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
#labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None, #this is from the previous stage
|
||||
):
|
||||
#TODO: add explaination of the output here.
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
the model is configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
# debugging
|
||||
# preprocess:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if self.config.is_decoder:
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
else:
|
||||
use_cache = False
|
||||
|
||||
if stage_manager.is_first_stage():
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
||||
attention_mask = extended_attention_mask
|
||||
else:
|
||||
input_shape = hidden_states.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = hidden_states.device
|
||||
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if use_cache:
|
||||
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
||||
use_cache = False
|
||||
|
||||
# past_key_values_length
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
||||
|
||||
if token_type_ids is None:
|
||||
if hasattr(self.embeddings, "token_type_ids"):
|
||||
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
||||
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
||||
token_type_ids = buffered_token_type_ids_expanded
|
||||
else:
|
||||
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
hidden_states = hidden_states if hidden_states is not None else None
|
||||
if stage_manager.is_first_stage():
|
||||
hidden_states = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
token_type_ids=token_type_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if self.config.is_decoder and encoder_hidden_states is not None:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
if encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
#inherit from bert_layer
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||||
|
||||
if self.encoder.gradient_checkpointing and self.encoder.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
#calculate the num_layers
|
||||
num_layers_per_stage = len(self.encoder.layer) // stage_manager.num_stages
|
||||
start_layer = stage_manager.stage * num_layers_per_stage
|
||||
end_layer = (stage_manager.stage + 1) * num_layers_per_stage
|
||||
|
||||
#layer_outputs
|
||||
layer_outputs = hidden_states if hidden_states is not None else None
|
||||
for idx, encoder_layer in enumerate(self.encoder.layer[start_layer:end_layer], start=start_layer):
|
||||
if stage_manager.is_first_stage() and idx == 0:
|
||||
encoder_attention_mask = encoder_extended_attention_mask
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_head_mask = head_mask[idx] if head_mask is not None else None
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if self.encoder.gradient_checkpointing and self.encoder.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(encoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
)
|
||||
else:
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[-1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
if self.config.add_cross_attention:
|
||||
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
#end of a stage loop
|
||||
sequence_output = layer_outputs[0] if layer_outputs is not None else None
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + layer_outputs[1:]
|
||||
|
||||
#output of non-first and non-last stages:
|
||||
if not return_dict:
|
||||
return tuple(v for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
] if v is not None)
|
||||
|
||||
#return dict is not supported at this moment
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
# The layer partition policy for bertmodel
|
||||
class BertModelPolicy(Policy):
|
||||
|
||||
def __init__(self, stage_manager: PipelineStageManager, num_layers: int, num_stages: int):
|
||||
self.stage_manager = stage_manager
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, num_stages)
|
||||
|
||||
def get_hold_layers(self, module: BertModel) -> List[Module]:
|
||||
"""
|
||||
get pipeline layers for current stage
|
||||
"""
|
||||
hold_layers = []
|
||||
if self.stage_manager.is_first_stage():
|
||||
hold_layers.append(module.embeddings)
|
||||
num_layers_per_stage_accumulated = np.cumsum(self.layers_per_stage)
|
||||
hold_layers.extend(module.encoder.layer[num_layers_per_stage_accumulated \
|
||||
[self.stage_manager.stage-1] if self.stage_manager.stage > 0 else 0:
|
||||
num_layers_per_stage_accumulated[self.stage_manager.stage]])
|
||||
|
||||
if self.stage_manager.is_last_stage():
|
||||
hold_layers.append(module.pooler)
|
||||
|
||||
return hold_layers
|
||||
|
||||
def get_shared_params(self, module: BertModel) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bertmodel'''
|
||||
pass
|
||||
|
||||
def replace_forward(self, module: Module) -> None:
|
||||
module.model.forward = MethodType(partial(bert_model_forward, stage_manager=self.stage_manager), module.model)
|
||||
|
||||
def distribute_layers(self, num_layers: int, num_stages: int) -> List[int]:
|
||||
"""
|
||||
divide layers into stages
|
||||
"""
|
||||
quotient = num_layers // num_stages
|
||||
remainder = num_layers % num_stages
|
||||
|
||||
# calculate the num_layers per stage
|
||||
layers_per_stage = [quotient] * num_stages
|
||||
|
||||
# deal with the rest layers
|
||||
if remainder > 0:
|
||||
start_position = num_layers // 2 - remainder // 2
|
||||
for i in range(start_position, start_position + remainder):
|
||||
layers_per_stage[i] += 1
|
||||
return layers_per_stage
|
||||
|
||||
|
||||
def bert_for_pretraining_forward(
|
||||
self: BertForPreTraining,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
next_sentence_label: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
hidden_states: Optional[torch.LongTensor] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.bert(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
sequence_output, pooled_output = outputs[:2]
|
||||
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
||||
|
||||
total_loss = None
|
||||
if labels is not None and next_sentence_label is not None:
|
||||
loss_fct = CrossEntropyLoss()
|
||||
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
||||
total_loss = masked_lm_loss + next_sentence_loss
|
||||
|
||||
if not return_dict:
|
||||
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
|
||||
return BertForPreTrainingOutput(
|
||||
loss=total_loss,
|
||||
prediction_logits=prediction_scores,
|
||||
seq_relationship_logits=seq_relationship_score,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
|
||||
class BertForPreTrainingPolicy(Policy):
|
||||
|
||||
def __init__(self, stage_manager: PipelineStageManager, num_layers: int, num_stages: int):
|
||||
self.stage_manager = stage_manager
|
||||
self.layers_per_stage = self.distribute_layers(num_layers, num_stages)
|
||||
|
||||
def get_hold_layers(self, module: BertForPreTraining) -> List[Module]:
|
||||
"""
|
||||
get pipeline layers for current stage
|
||||
"""
|
||||
hold_layers = []
|
||||
if self.stage_manager.is_first_stage():
|
||||
hold_layers.append(module.bert.embeddings)
|
||||
num_layers_per_stage_accumulated = np.cumsum(self.layers_per_stage)
|
||||
hold_layers.extend(module.bert.encoder.layer[num_layers_per_stage_accumulated \
|
||||
[self.stage_manager.stage-1] if self.stage_manager.stage > 0 else 0:
|
||||
num_layers_per_stage_accumulated[self.stage_manager.stage]])
|
||||
if self.stage_manager.is_last_stage():
|
||||
hold_layers.append(module.cls)
|
||||
|
||||
return hold_layers
|
||||
|
||||
def get_shared_params(self, module: BertForPreTraining) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bertmodel'''
|
||||
pass
|
||||
|
||||
def replace_forward(self, module: Module) -> None:
|
||||
module.model.forward = MethodType(partial(bert_for_pretraining_forward, stage_manager=self.stage_manager),
|
||||
module.model)
|
||||
|
||||
def distribute_layers(self, num_layers: int, num_stages: int) -> List[int]:
|
||||
"""
|
||||
divide layers into stages
|
||||
"""
|
||||
quotient = num_layers // num_stages
|
||||
remainder = num_layers % num_stages
|
||||
|
||||
# calculate the num_layers per stage
|
||||
layers_per_stage = [quotient] * num_stages
|
||||
|
||||
# deal with the rest layers
|
||||
if remainder > 0:
|
||||
start_position = num_layers // 2 - remainder // 2
|
||||
for i in range(start_position, start_position + remainder):
|
||||
layers_per_stage[i] += 1
|
||||
return layers_per_stage
|
|
@ -0,0 +1,153 @@
|
|||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import CrossEntropyLoss, Module
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
||||
from transformers.models.bloom.modeling_bloom import BloomModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
from .base import Policy
|
||||
|
||||
|
||||
def bloom_model_forward(
|
||||
self: BloomModel,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
**deprecated_arguments,
|
||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape batch_size x num_heads x N x N
|
||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
# Compute alibi tensor: check build_alibi_tensor documentation
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
if past_key_values[0] is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||||
|
||||
causal_mask = self._prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
alibi,
|
||||
causal_mask,
|
||||
layer_past,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
alibi=alibi,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
|
@ -0,0 +1,112 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.bert.modeling_bert import BertModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.pipeline.policy.bert import BertModelPolicy, bert_model_forward
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
def check_bert_model_forward():
|
||||
model = BertModel.from_pretrained('bert-base-uncased')
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
#print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
# print(rank)
|
||||
|
||||
x = torch.randint(0, 1000, (2, 3))
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 768)).to(torch.float32)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x)
|
||||
output = bert_model_forward(self=model, input_ids=x, attention_mask=attention_mask, stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 768)
|
||||
print('start the training')
|
||||
else:
|
||||
attention_mask = torch.ones((2, 12, 3, 3))
|
||||
output = bert_model_forward(self=model,
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
stage_manager=stage_manager)
|
||||
print(output[0].shape)
|
||||
assert output[0].shape == (2, 3, 768)
|
||||
print('end the training')
|
||||
print(output)
|
||||
|
||||
# assert output[1].shape == (2, 768)
|
||||
|
||||
|
||||
def check_bert_model_policy():
|
||||
model = BertModel.from_pretrained('bert-base-uncased')
|
||||
DP_DIM, PP_DIM = 0, 1
|
||||
DP_SIZE, PP_SIZE = 2, 2
|
||||
RANK_TO_COORDINATE = {
|
||||
0: (0, 0),
|
||||
1: (0, 1),
|
||||
2: (1, 0),
|
||||
3: (1, 1),
|
||||
}
|
||||
PP_RANKS_IN_GROUP = {
|
||||
0: [0, 1],
|
||||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
#print(pg_mesh)
|
||||
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
||||
model_policy = BertModelPolicy(stage_manager, len(model.encoder.layer), 2)
|
||||
assert model_policy.layers_per_stage == [6, 6]
|
||||
layers = model_policy.get_hold_layers(model)
|
||||
for layer in layers:
|
||||
print(layer)
|
||||
|
||||
|
||||
def run_dist_model(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_model_forward()
|
||||
|
||||
|
||||
def run_dist_policy(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host='localhost')
|
||||
check_bert_model_policy()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_model_forward():
|
||||
spawn(run_dist_model, 4)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert_model_policy():
|
||||
spawn(run_dist_policy, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""test the bert model forward and bert model policy"""
|
||||
test_bert_model_forward()
|
||||
test_bert_model_policy()
|
|
@ -21,7 +21,7 @@ def check_stage_manager():
|
|||
1: [0, 1],
|
||||
2: [2, 3],
|
||||
3: [2, 3],
|
||||
}
|
||||
}
|
||||
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
|
||||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
rank = dist.get_rank()
|
||||
|
|
Loading…
Reference in New Issue