mirror of https://github.com/hpcaitech/ColossalAI
[pipeline] refactor 1f1b schedule (#4115)
* [api] update optimizer wrapper to fit pipeline * [pipeline] add base schedule * [pipeline] add 1f1b schedule * [test] add pipeline schedule utils test * [pipeline] fix importpull/4445/head
parent
45fdc9b42c
commit
f51ce1bc8e
|
@ -1,5 +1,6 @@
|
|||
from typing import Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
|
@ -53,6 +54,9 @@ class OptimizerWrapper:
|
|||
"""
|
||||
loss.backward(*args, **kwargs)
|
||||
|
||||
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
||||
torch.autograd.backward(tensor, grad)
|
||||
|
||||
def state_dict(self):
|
||||
"""
|
||||
Returns the optimizer state.
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
from .base import PipelineSchedule
|
||||
from .one_f_one_b import OneForwardOneBackwardSchedule
|
||||
|
||||
__all__ = [
|
||||
'PipelineSchedule',
|
||||
'OneForwardOneBackwardSchedule',
|
||||
]
|
|
@ -0,0 +1,129 @@
|
|||
from typing import Any, List, Optional
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
from torch.nn import Module
|
||||
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def to_device(x: Any, device: Optional[torch.device] = None) -> Any:
|
||||
"""Move object to device if it is a tensor.
|
||||
|
||||
Args:
|
||||
x (Any): Object to be moved.
|
||||
device (Optional[torch.device], optional): Target device. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Any: Moved object.
|
||||
"""
|
||||
if isinstance(x, torch.Tensor):
|
||||
return x.to(device)
|
||||
return x
|
||||
|
||||
|
||||
def get_batch_size(batch: Any) -> int:
|
||||
"""Get the batch size (size of dimension-0) of the first tensor in the batch.
|
||||
|
||||
Args:
|
||||
batch (Any): Batch to be inspected.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If no tensor is found in the batch.
|
||||
|
||||
Returns:
|
||||
int: Batch size.
|
||||
"""
|
||||
data_list, _ = tree_flatten(batch)
|
||||
for data in data_list:
|
||||
if isinstance(data, torch.Tensor):
|
||||
return data.size(0)
|
||||
raise RuntimeError('No tensor found in the batch')
|
||||
|
||||
|
||||
def get_micro_batch(batch: Any, start: int, micro_batch_size: int) -> Any:
|
||||
"""Get a micro batch of the original batch.
|
||||
|
||||
Args:
|
||||
batch (Any): Batch to be sliced.
|
||||
start (int): Start index of the micro batch.
|
||||
micro_batch_size (int): Size of the micro batch.
|
||||
|
||||
Returns:
|
||||
Any: Target micro batch.
|
||||
"""
|
||||
|
||||
def _get_tensor_slice(x: Any):
|
||||
if isinstance(x, torch.Tensor):
|
||||
return x[start:start + micro_batch_size]
|
||||
return x
|
||||
|
||||
return tree_map(_get_tensor_slice, batch)
|
||||
|
||||
|
||||
def model_forward(model: Module, data: Any, internal_inputs: Optional[dict]) -> Any:
|
||||
"""Call model forward function with data and internal inputs.
|
||||
|
||||
Args:
|
||||
model (Module): Model to be called.
|
||||
data (Any): Data loaded from data iterator.
|
||||
internal_inputs (Optional[dict]): Data from previous stage. It must be a dict or None if it's the first stage.
|
||||
|
||||
Returns:
|
||||
Any: Outputs of the model.
|
||||
"""
|
||||
if internal_inputs is None:
|
||||
internal_inputs = {}
|
||||
if isinstance(data, (list, tuple)):
|
||||
return model(*data, **internal_inputs)
|
||||
elif isinstance(data, dict):
|
||||
return model(**data, **internal_inputs)
|
||||
return model(data, **internal_inputs)
|
||||
|
||||
|
||||
def retain_grad(x: Any) -> None:
|
||||
"""Call retain_grad() on a tensor.
|
||||
|
||||
Args:
|
||||
x (Any): Object to be called.
|
||||
"""
|
||||
if isinstance(x, torch.Tensor):
|
||||
x.retain_grad()
|
||||
|
||||
|
||||
def detach(x: Any) -> Any:
|
||||
"""Call detach() on a tensor.
|
||||
|
||||
Args:
|
||||
x (Any): Object to be called.
|
||||
|
||||
Returns:
|
||||
Any: The detached object.
|
||||
"""
|
||||
if isinstance(x, torch.Tensor):
|
||||
return x.detach()
|
||||
return x
|
||||
|
||||
|
||||
def merge_batch(data: List[Any]) -> Any:
|
||||
"""Merge micro batches into a batch.
|
||||
|
||||
Args:
|
||||
data (List[Any]): A list of micro batches.
|
||||
|
||||
Returns:
|
||||
Any: Merge batch.
|
||||
"""
|
||||
if len(data) == 0:
|
||||
return
|
||||
flattened_data = []
|
||||
tree_spec = None
|
||||
for d in data:
|
||||
elems, tree_spec = tree_flatten(d)
|
||||
flattened_data.append(elems)
|
||||
merged_data = []
|
||||
for elem_batch in zip(*flattened_data):
|
||||
if isinstance(elem_batch[0], torch.Tensor):
|
||||
merged_data.append(torch.cat(elem_batch, dim=0))
|
||||
else:
|
||||
merged_data.append(list(elem_batch))
|
||||
return tree_unflatten(merged_data, tree_spec)
|
|
@ -0,0 +1,35 @@
|
|||
from typing import Any, Callable, Iterable
|
||||
|
||||
from torch import Tensor
|
||||
from torch.nn import Module
|
||||
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
|
||||
class PipelineSchedule:
|
||||
|
||||
def __init__(self, stage_manager: PipelineStageManager) -> None:
|
||||
self.stage_manager = stage_manager
|
||||
|
||||
def forward_backward_step(self,
|
||||
model: Module,
|
||||
optimizer: OptimizerWrapper,
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[[Any, Any], Tensor],
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False) -> dict:
|
||||
"""Forward and backward step for pipeline training.
|
||||
|
||||
Args:
|
||||
model (Module): Model to be trained.
|
||||
optimizer (OptimizerWrapper): Optimizer to be used.
|
||||
data_iter (Iterable): Data iterator.
|
||||
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
||||
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
||||
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
||||
|
||||
Returns:
|
||||
dict: A dict with keys: 'loss' and 'outputs'.
|
||||
"""
|
||||
raise NotImplementedError
|
|
@ -0,0 +1,229 @@
|
|||
from functools import partial
|
||||
from typing import Any, Callable, Iterable, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
from torch.nn import Module
|
||||
from torch.utils._pytree import tree_map
|
||||
|
||||
from colossalai.interface import OptimizerWrapper
|
||||
from colossalai.pipeline.p2p import PipelineP2PCommunication
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
|
||||
from ._utils import detach, get_batch_size, get_micro_batch, merge_batch, model_forward, retain_grad, to_device
|
||||
from .base import PipelineSchedule
|
||||
|
||||
|
||||
class OneForwardOneBackwardSchedule(PipelineSchedule):
|
||||
|
||||
def __init__(self, num_microbatches: int, stage_manager: PipelineStageManager) -> None:
|
||||
super().__init__(stage_manager)
|
||||
self.comm = PipelineP2PCommunication(stage_manager)
|
||||
self.num_microbatches = num_microbatches
|
||||
self.batch: Optional[Any] = None
|
||||
self.batch_size: Optional[int] = None
|
||||
self.microbatch_offset: Optional[int] = None
|
||||
self.microbatch_size: Optional[int] = None
|
||||
|
||||
def load_batch(self, data_iter: Iterable, device: Optional[torch.device] = None) -> None:
|
||||
"""Load a batch from data iterator.
|
||||
|
||||
Args:
|
||||
data_iter (Iterable): Data iterator.
|
||||
device (Optional[torch.device], optional): Target device. Defaults to None.
|
||||
"""
|
||||
batch = next(data_iter)
|
||||
if device is not None:
|
||||
batch = tree_map(partial(to_device, device=device), batch)
|
||||
self.batch = batch
|
||||
self.batch_size = get_batch_size(batch)
|
||||
self.microbatch_offset = 0
|
||||
assert self.batch_size % self.num_microbatches == 0, \
|
||||
"Batch size should divided by the number of microbatches"
|
||||
self.microbatch_size = self.batch_size // self.num_microbatches
|
||||
|
||||
def load_micro_batch(self) -> Any:
|
||||
"""Load a micro batch from the current batch.
|
||||
|
||||
Returns:
|
||||
Any: Micro batch.
|
||||
"""
|
||||
micro_batch = get_micro_batch(self.batch, self.microbatch_offset, self.microbatch_size)
|
||||
self.microbatch_offset += self.microbatch_size
|
||||
return tree_map(partial(to_device, device=get_current_device()), micro_batch)
|
||||
|
||||
def forward_step(self,
|
||||
model: Module,
|
||||
input_obj: Optional[dict],
|
||||
criterion: Callable,
|
||||
accum_loss: Optional[torch.Tensor] = None,
|
||||
outputs: Optional[List[Any]] = None) -> Union[torch.Tensor, dict]:
|
||||
"""Forward one step of the pipeline
|
||||
|
||||
Args:
|
||||
model (Module): Model to be run
|
||||
input_obj (Optional[dict]): The output from the previous stage. If it is the first stage, the `input_obj` is None.
|
||||
criterion (Callable): Criterion to calculate loss.
|
||||
accum_loss (Optional[torch.Tensor], optional): Accumulated loss. Defaults to None.
|
||||
outputs (Optional[List[Any]], optional): List to store the output of the last stage (final output). Defaults to None.
|
||||
|
||||
Returns:
|
||||
Union[torch.Tensor, dict]: The intermediate output (dict) of the current stage. If it is the last stage, the output is the loss (Tensor).
|
||||
"""
|
||||
micro_batch = self.load_micro_batch()
|
||||
|
||||
# for the first stage, input_obj is None
|
||||
# for the non-first stage, input_obj is the output of the previous stage and it's must be a dict
|
||||
output_obj = model_forward(model, micro_batch, input_obj)
|
||||
|
||||
if self.stage_manager.is_last_stage():
|
||||
loss = criterion(output_obj, micro_batch) / self.num_microbatches
|
||||
if accum_loss is not None:
|
||||
accum_loss.add_(loss.detach())
|
||||
if outputs is not None:
|
||||
outputs.append(tree_map(detach, output_obj))
|
||||
return loss
|
||||
else:
|
||||
return output_obj
|
||||
|
||||
def backward_step(self, optimizer: OptimizerWrapper, input_obj: Optional[dict],
|
||||
output_obj: Union[dict, torch.Tensor], output_obj_grad: Optional[dict]) -> Optional[dict]:
|
||||
"""Backward one step of the pipeline
|
||||
|
||||
Args:
|
||||
optimizer (OptimizerWrapper): Optimizer to update the model
|
||||
input_obj (Optional[dict]): Output of the previous stage. If it is the first stage, the `input_obj` is None.
|
||||
output_obj (Union[dict, torch.Tensor]): Output of the current stage. If it is the last stage, the output is the loss (Tensor).
|
||||
output_obj_grad (dict): Gradient of the `output_obj`. If it is the last stage, the `output_obj_grad` is None.
|
||||
|
||||
Returns:
|
||||
Optional[dict]: Gradient of the `input_obj`. If it is the first stage, the `input_obj_grad` is None.
|
||||
"""
|
||||
|
||||
# Retain the grad on the input_obj.
|
||||
tree_map(retain_grad, input_obj)
|
||||
|
||||
# Backward pass.
|
||||
if output_obj_grad is None:
|
||||
optimizer.backward(output_obj)
|
||||
else:
|
||||
for k, grad in output_obj_grad.items():
|
||||
optimizer.backward_by_grad(output_obj[k], grad)
|
||||
|
||||
# Collect the grad of the input_obj.
|
||||
input_obj_grad = None
|
||||
if input_obj is not None:
|
||||
input_obj_grad = {}
|
||||
for k, v in input_obj.items():
|
||||
if isinstance(v, torch.Tensor) and v.grad is not None:
|
||||
input_obj_grad[k] = v.grad
|
||||
return input_obj_grad
|
||||
|
||||
def forward_backward_step(self,
|
||||
model: Module,
|
||||
optimizer: OptimizerWrapper,
|
||||
data_iter: Iterable,
|
||||
criterion: Callable[..., Any],
|
||||
return_loss: bool = False,
|
||||
return_outputs: bool = False) -> dict:
|
||||
"""Runs non-interleaved 1F1B schedule, with communication between pipeline stages.
|
||||
|
||||
Args:
|
||||
model (Module): Model to be trained.
|
||||
optimizer (OptimizerWrapper): Optimizer to be used.
|
||||
data_iter (Iterable): Data iterator.
|
||||
criterion (Callable[[Any, Any], Tensor]): Criterion to be used. It should take two arguments: model outputs and inputs, and returns loss tensor.
|
||||
return_loss (bool, optional): Whether to return loss. Defaults to False. Whether to return loss.
|
||||
return_outputs (bool, optional): Whether to return model outputs. Defaults to False. Whether to return model outputs.
|
||||
|
||||
Returns:
|
||||
dict: A dict with keys: 'loss' and 'outputs'.
|
||||
"""
|
||||
forward_only = not torch.is_grad_enabled()
|
||||
|
||||
self.load_batch(data_iter)
|
||||
|
||||
# num_warmup_microbatches is the step when not all the processes are working
|
||||
num_warmup_microbatches = self.stage_manager.num_stages - self.stage_manager.stage - 1
|
||||
num_warmup_microbatches = min(num_warmup_microbatches, self.num_microbatches)
|
||||
num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches
|
||||
|
||||
# Input, output tensors only need to be saved when doing backward passes
|
||||
input_objs = None
|
||||
output_objs = None
|
||||
|
||||
if not forward_only:
|
||||
input_objs = []
|
||||
output_objs = []
|
||||
|
||||
outputs = [] if return_outputs and self.stage_manager.is_last_stage() else None
|
||||
if return_loss and self.stage_manager.is_last_stage():
|
||||
accum_loss = torch.zeros(1, device=get_current_device())
|
||||
else:
|
||||
accum_loss = None
|
||||
|
||||
# Run warmup forward passes.
|
||||
for i in range(num_warmup_microbatches):
|
||||
input_obj = self.comm.recv_forward()
|
||||
|
||||
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
||||
|
||||
self.comm.send_forward(output_obj)
|
||||
|
||||
if not forward_only:
|
||||
input_objs.append(input_obj)
|
||||
output_objs.append(output_obj)
|
||||
|
||||
# Before running 1F1B, need to receive first forward tensor.
|
||||
# If all microbatches are run in warmup / cooldown phase, then no need to
|
||||
# receive this tensor here.
|
||||
if num_microbatches_remaining > 0:
|
||||
input_obj = self.comm.recv_forward()
|
||||
|
||||
# Run 1F1B in steady state.
|
||||
for i in range(num_microbatches_remaining):
|
||||
last_iteration = (i == (num_microbatches_remaining - 1))
|
||||
|
||||
output_obj = self.forward_step(model, input_obj, criterion, accum_loss, outputs)
|
||||
if forward_only:
|
||||
self.comm.send_forward(output_obj)
|
||||
|
||||
if not last_iteration:
|
||||
input_obj = self.comm.recv_forward()
|
||||
|
||||
else:
|
||||
# TODO adjust here
|
||||
self.comm.send_forward(output_obj)
|
||||
output_obj_grad = self.comm.recv_backward()
|
||||
|
||||
# Add input_obj and output_obj to end of list.
|
||||
input_objs.append(input_obj)
|
||||
output_objs.append(output_obj)
|
||||
|
||||
# Pop output_obj and output_obj from the start of the list for
|
||||
# the backward pass.
|
||||
input_obj = input_objs.pop(0)
|
||||
output_obj = output_objs.pop(0)
|
||||
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
|
||||
if last_iteration:
|
||||
input_obj = None
|
||||
else:
|
||||
input_obj = self.comm.recv_forward()
|
||||
self.comm.send_backward(input_obj_grad)
|
||||
|
||||
# Run cooldown backward passes.
|
||||
if not forward_only:
|
||||
for i in range(num_warmup_microbatches):
|
||||
input_obj = input_objs.pop(0)
|
||||
output_obj = output_objs.pop(0)
|
||||
|
||||
output_obj_grad = self.comm.recv_backward()
|
||||
input_obj_grad = self.backward_step(optimizer, input_obj, output_obj, output_obj_grad)
|
||||
self.comm.send_backward(input_obj_grad)
|
||||
|
||||
if outputs is not None:
|
||||
outputs = merge_batch(outputs)
|
||||
return {'loss': accum_loss, 'outputs': outputs}
|
|
@ -0,0 +1,47 @@
|
|||
import torch
|
||||
|
||||
from colossalai.pipeline.schedule._utils import get_batch_size, get_micro_batch, merge_batch
|
||||
|
||||
|
||||
def test_get_batch_size():
|
||||
tensor = torch.rand(2, 3)
|
||||
assert get_batch_size(tensor) == 2
|
||||
assert get_batch_size([tensor]) == 2
|
||||
assert get_batch_size((1, tensor)) == 2
|
||||
assert get_batch_size({'tensor': tensor}) == 2
|
||||
assert get_batch_size({'dummy': [1], 'tensor': tensor}) == 2
|
||||
assert get_batch_size({'tensor': [tensor]}) == 2
|
||||
|
||||
|
||||
def test_get_micro_batch():
|
||||
x = torch.rand(2, 1)
|
||||
y = torch.rand(2, 3)
|
||||
micro_batch = get_micro_batch(x, 0, 1)
|
||||
assert torch.equal(micro_batch, x[0:1])
|
||||
micro_batch = get_micro_batch(x, 1, 1)
|
||||
assert torch.equal(micro_batch, x[1:2])
|
||||
micro_batch = get_micro_batch([x, y], 0, 1)
|
||||
assert torch.equal(micro_batch[0], x[0:1])
|
||||
assert torch.equal(micro_batch[1], y[0:1])
|
||||
micro_batch = get_micro_batch([x, y], 1, 1)
|
||||
assert torch.equal(micro_batch[0], x[1:2])
|
||||
assert torch.equal(micro_batch[1], y[1:2])
|
||||
micro_batch = get_micro_batch({'x': x, 'y': y}, 0, 1)
|
||||
assert torch.equal(micro_batch['x'], x[0:1])
|
||||
assert torch.equal(micro_batch['y'], y[0:1])
|
||||
micro_batch = get_micro_batch({'x': x, 'y': y}, 1, 1)
|
||||
assert torch.equal(micro_batch['x'], x[1:2])
|
||||
assert torch.equal(micro_batch['y'], y[1:2])
|
||||
|
||||
|
||||
def test_merge_batch():
|
||||
x = torch.rand(2, 1)
|
||||
y = torch.rand(2, 3)
|
||||
merged = merge_batch([x[0:1], x[1:2]])
|
||||
assert torch.equal(merged, x)
|
||||
merged = merge_batch([[x[0:1], y[0:1]], [x[1:2], y[1:2]]])
|
||||
assert torch.equal(merged[0], x)
|
||||
assert torch.equal(merged[1], y)
|
||||
merged = merge_batch([{'x': x[0:1], 'y': y[0:1]}, {'x': x[1:2], 'y': y[1:2]}])
|
||||
assert torch.equal(merged['x'], x)
|
||||
assert torch.equal(merged['y'], y)
|
Loading…
Reference in New Issue