mirror of https://github.com/hpcaitech/ColossalAI
Merge branch 'dev/zero-offload' into offload
commit
e893f88a4f
|
@ -110,4 +110,6 @@ class DistCrossEntropy(Function):
|
|||
def cross_entropy_1d(
|
||||
vocab_logits: torch.Tensor, labels: torch.Tensor, ignore_index: int = -100, process_group: ProcessGroup = None
|
||||
) -> torch.Tensor:
|
||||
|
||||
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group)
|
||||
|
||||
|
|
|
@ -24,10 +24,7 @@ from transformers.models.llama.modeling_llama import (
|
|||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.layer._operation import (
|
||||
gather_forward_split_backward,
|
||||
split_forward_gather_backward,
|
||||
)
|
||||
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
|
||||
from ..layer import ColoAttention, cross_entropy_1d
|
||||
|
@ -564,7 +561,7 @@ def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None,
|
|||
# sp: all-to-all comminucation when introducing sequence parallel
|
||||
if sp_mode == "all_to_all":
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
||||
#attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
|
||||
# attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
|
||||
else:
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
|
@ -824,4 +821,4 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
|||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
return forward
|
||||
return forward
|
||||
|
|
Loading…
Reference in New Issue