mirror of https://github.com/hpcaitech/ColossalAI
commit
35ef72bfd1
|
@ -15,7 +15,15 @@ class DistCrossEntropy(Function):
|
|||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, vocab_logits: torch.Tensor, target: torch.Tensor, ignore_index: int, process_group: ProcessGroup):
|
||||
def forward(
|
||||
ctx,
|
||||
vocab_logits: torch.Tensor,
|
||||
target: torch.Tensor,
|
||||
ignore_index: int,
|
||||
process_group: ProcessGroup,
|
||||
vocab_size: int,
|
||||
dtype=torch.float32,
|
||||
):
|
||||
r"""
|
||||
Calculate the cross entropy loss before gather, the origin loss function is as follows:
|
||||
loss = -log(exp(x[class])/sum(exp(x[i]))
|
||||
|
@ -27,7 +35,7 @@ class DistCrossEntropy(Function):
|
|||
Args:
|
||||
vocab_logits (:class:`torch.Tensor`): The logits of the vocabulary, shape is
|
||||
[batch_size, seq_len, vocab_size]
|
||||
labels (:class:`torch.Tensor`): The labels of the vocabulary, shape is
|
||||
target (:class:`torch.Tensor`): The labels of the vocabulary, shape is
|
||||
[batch_size, seq_len]
|
||||
|
||||
Returns:
|
||||
|
@ -41,15 +49,21 @@ class DistCrossEntropy(Function):
|
|||
vocab_logits = vocab_logits - logits_max.unsqueeze(dim=-1)
|
||||
|
||||
# mask the target in the local device
|
||||
partition_vocab_size = vocab_logits.size()[-1]
|
||||
rank = dist.get_rank(group=process_group)
|
||||
world_size = dist.get_world_size(group=process_group)
|
||||
global_vocab_size = partition_vocab_size * world_size
|
||||
if vocab_size == None:
|
||||
partition_vocab_size = vocab_logits.size()[-1]
|
||||
global_vocab_size = partition_vocab_size * world_size
|
||||
else:
|
||||
global_vocab_size = vocab_size
|
||||
partition_vocab_size = global_vocab_size // world_size
|
||||
|
||||
# [down, up) => false, other device and -100 => true
|
||||
delta = (global_vocab_size + world_size - 1) // world_size
|
||||
down_threshold = rank * delta
|
||||
up_threshold = down_threshold + delta
|
||||
if up_threshold > global_vocab_size:
|
||||
up_threshold = global_vocab_size
|
||||
mask = (target < down_threshold) | (target >= up_threshold)
|
||||
masked_target = target.clone() - down_threshold
|
||||
masked_target[mask] = 0
|
||||
|
@ -57,7 +71,8 @@ class DistCrossEntropy(Function):
|
|||
# reshape the logits and target
|
||||
# reshape the vocab_logits to [bath_size * seq_len, vocab_size]
|
||||
# reshape the labels to [bath_size * seq_len]
|
||||
logits_2d = vocab_logits.view(-1, partition_vocab_size)
|
||||
self_vocab_size = vocab_logits.size()[-1]
|
||||
logits_2d = vocab_logits.view(-1, self_vocab_size)
|
||||
masked_target_1d = masked_target.view(-1)
|
||||
|
||||
# extract the x[class] and set the x[other device] to zero
|
||||
|
@ -72,7 +87,7 @@ class DistCrossEntropy(Function):
|
|||
dist.all_reduce(pred_logits, op=dist.ReduceOp.SUM, group=process_group)
|
||||
exp_logits = vocab_logits
|
||||
torch.exp(vocab_logits, out=exp_logits)
|
||||
sum_exp_logits = torch.sum(exp_logits, dim=-1)
|
||||
sum_exp_logits = torch.sum(exp_logits, dim=-1, dtype=torch.float32)
|
||||
dist.all_reduce(sum_exp_logits, op=dist.ReduceOp.SUM, group=process_group)
|
||||
|
||||
# calculate the loss
|
||||
|
@ -83,9 +98,10 @@ class DistCrossEntropy(Function):
|
|||
loss = torch.sum(loss).div_(num_non_zero)
|
||||
|
||||
# calculate the softmax
|
||||
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
|
||||
exp_logits = exp_logits.div(sum_exp_logits.unsqueeze(dim=-1)).to(dtype)
|
||||
exp_logits[target == ignore_index] = 0.0
|
||||
ctx.save_for_backward(exp_logits, mask, masked_target_1d)
|
||||
ctx.dtype = dtype
|
||||
|
||||
return loss
|
||||
|
||||
|
@ -100,14 +116,19 @@ class DistCrossEntropy(Function):
|
|||
partion_vocab_size = grad_logits.shape[-1]
|
||||
grad_logits_2d = grad_logits.view(-1, partion_vocab_size)
|
||||
|
||||
update = 1.0 - mask.view(-1).float()
|
||||
update = 1.0 - mask.view(-1).float().to(ctx.dtype)
|
||||
grad_logits_2d[torch.arange(0, grad_logits_2d.shape[0]), masked_target_1d] -= update
|
||||
|
||||
grad_logits.mul_(grad_output.unsqueeze(dim=-1))
|
||||
return grad_logits, None, None, None
|
||||
return grad_logits, None, None, None, None, None
|
||||
|
||||
|
||||
def cross_entropy_1d(
|
||||
vocab_logits: torch.Tensor, labels: torch.Tensor, ignore_index: int = -100, process_group: ProcessGroup = None
|
||||
vocab_logits: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
ignore_index: int = -100,
|
||||
process_group: ProcessGroup = None,
|
||||
vocab_size: int = None,
|
||||
dtype: torch.dtype = None,
|
||||
) -> torch.Tensor:
|
||||
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group)
|
||||
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group, vocab_size, dtype)
|
||||
|
|
|
@ -1,29 +1,34 @@
|
|||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from transformers.cache_utils import Cache, DynamicCache
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
SequenceClassifierOutputWithPast,
|
||||
)
|
||||
from transformers.models.llama.modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel
|
||||
from transformers.models.llama.modeling_llama import (
|
||||
LlamaForCausalLM,
|
||||
LlamaForSequenceClassification,
|
||||
LlamaModel,
|
||||
StaticCache,
|
||||
apply_rotary_pos_emb,
|
||||
repeat_kv,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
|
||||
from ..layer import ColoAttention, cross_entropy_1d
|
||||
|
||||
try:
|
||||
from transformers.models.llama.modeling_llama import _prepare_4d_causal_attention_mask
|
||||
|
||||
LATEST_VERSION = True
|
||||
except ImportError:
|
||||
LATEST_VERSION = False
|
||||
|
||||
|
||||
class LlamaPipelineForwards:
|
||||
"""
|
||||
|
@ -43,6 +48,7 @@ class LlamaPipelineForwards:
|
|||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
|
@ -55,30 +61,45 @@ class LlamaPipelineForwards:
|
|||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with pipeline parallelism. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if stage_manager.is_first_stage():
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
batch_size, seq_length = input_ids.shape[:2]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = hidden_states.device
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
past_seen_tokens = 0
|
||||
if use_cache: # kept for BC (cache positions)
|
||||
if not isinstance(past_key_values, StaticCache):
|
||||
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||
past_seen_tokens = past_key_values.get_seq_length()
|
||||
if cache_position is None:
|
||||
if isinstance(past_key_values, StaticCache):
|
||||
raise ValueError("cache_position is a required argument when using StaticCache.")
|
||||
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=device)
|
||||
|
||||
seq_length_with_past = seq_length + past_seen_tokens
|
||||
|
||||
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
|
@ -91,17 +112,8 @@ class LlamaPipelineForwards:
|
|||
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
||||
use_cache = False
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
# embed positions, for the first stage, hidden_states is the input embeddings,
|
||||
# for the other stages, hidden_states is the output of the previous stage
|
||||
|
@ -109,23 +121,16 @@ class LlamaPipelineForwards:
|
|||
# in this case, attention_mask is a dict rather than a tensor
|
||||
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
|
||||
attention_mask = ColoAttention.prepare_attn_kwargs(
|
||||
mask_shape, hidden_states.dtype, hidden_states.device, q_padding_mask=attention_mask, is_causal=True
|
||||
mask_shape,
|
||||
hidden_states.dtype,
|
||||
hidden_states.device,
|
||||
q_padding_mask=attention_mask,
|
||||
is_causal=True,
|
||||
)
|
||||
else:
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(
|
||||
(batch_size, seq_length_with_past), dtype=torch.bool, device=hidden_states.device
|
||||
)
|
||||
if LATEST_VERSION:
|
||||
attention_mask = _prepare_4d_causal_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
|
||||
)
|
||||
else:
|
||||
attention_mask = self._prepare_decoder_attention_mask(
|
||||
attention_mask, (batch_size, seq_length), hidden_states, past_key_values_length
|
||||
)
|
||||
attention_mask = self._update_causal_mask(attention_mask, hidden_states, cache_position)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if self.gradient_checkpointing and self.training and use_cache:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
|
@ -135,7 +140,7 @@ class LlamaPipelineForwards:
|
|||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
next_decoder_cache = None
|
||||
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
num_ckpt_layers = 0
|
||||
|
@ -145,8 +150,10 @@ class LlamaPipelineForwards:
|
|||
if shard_config.gradient_checkpoint_config is not None:
|
||||
num_ckpt_layers = shard_config.gradient_checkpoint_config.get_num_ckpt_layers(
|
||||
stage=stage_manager.stage,
|
||||
num_stages=stage_manager.num_stages,
|
||||
num_layers=end_idx - start_idx,
|
||||
model_chunk_id=stage_manager.model_chunk_id if stage_manager.is_interleave else 0,
|
||||
model_chunk_id=(stage_manager.model_chunk_id if stage_manager.is_interleave else 0),
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
)
|
||||
assert num_ckpt_layers <= end_idx - start_idx
|
||||
|
||||
|
@ -154,38 +161,32 @@ class LlamaPipelineForwards:
|
|||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if idx - start_idx < num_ckpt_layers:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
None,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
cache_position,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
|
@ -198,7 +199,16 @@ class LlamaPipelineForwards:
|
|||
next_cache = next_decoder_cache if use_cache else None
|
||||
if stage_manager.is_last_stage():
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_cache,
|
||||
all_hidden_states,
|
||||
all_self_attns,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
|
@ -221,6 +231,7 @@ class LlamaPipelineForwards:
|
|||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
|
@ -278,6 +289,7 @@ class LlamaPipelineForwards:
|
|||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
|
@ -302,7 +314,11 @@ class LlamaPipelineForwards:
|
|||
new_vocab_size = logits.shape[-1]
|
||||
shift_logits = shift_logits.view(-1, new_vocab_size)
|
||||
loss = cross_entropy_1d(
|
||||
shift_logits, shift_labels, process_group=shard_config.tensor_parallel_process_group
|
||||
shift_logits,
|
||||
shift_labels,
|
||||
process_group=shard_config.tensor_parallel_process_group,
|
||||
vocab_size=self.lm_head.out_features,
|
||||
dtype=self.model.dtype,
|
||||
)
|
||||
else:
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
|
@ -336,6 +352,7 @@ class LlamaPipelineForwards:
|
|||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
|
@ -369,6 +386,7 @@ class LlamaPipelineForwards:
|
|||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
|
@ -438,71 +456,136 @@ class LlamaPipelineForwards:
|
|||
return {"hidden_states": hidden_states}
|
||||
|
||||
|
||||
def get_llama_flash_attention_forward(shard_config: ShardConfig):
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
||||
|
||||
llama_version = 2
|
||||
try:
|
||||
from transformers.models.llama.modeling_llama import repeat_kv
|
||||
except:
|
||||
warnings.warn("using llamav1, llamav1 hasn't repeat_kv function")
|
||||
llama_version = 1
|
||||
|
||||
def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
||||
def forward(
|
||||
self: LlamaAttention,
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[dict] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
assert q_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
if sp_mode is not None:
|
||||
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
|
||||
assert (sp_size is not None) and (
|
||||
sp_group is not None
|
||||
), "Must specify sp_size and sp_group for sequence parallel"
|
||||
if "padding_mask" in kwargs:
|
||||
warnings.warn(
|
||||
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
||||
)
|
||||
|
||||
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
# sp: modify sp_len when sequence parallel mode is ring
|
||||
if sp_mode in ["split_gather", "ring"]:
|
||||
q_len *= sp_size
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
||||
query_slices = self.q_proj.weight.split(
|
||||
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
||||
)
|
||||
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||
|
||||
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
query_states = torch.cat(query_states, dim=-1)
|
||||
|
||||
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
key_states = torch.cat(key_states, dim=-1)
|
||||
|
||||
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
value_states = torch.cat(value_states, dim=-1)
|
||||
else:
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
if self.layer_idx is None:
|
||||
raise ValueError(
|
||||
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
||||
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
||||
"with a layer index."
|
||||
)
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||
|
||||
if past_key_value is not None:
|
||||
# reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
if llama_version == 2:
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
if shard_config.enable_flash_attention:
|
||||
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
|
||||
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
|
||||
else:
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
|
||||
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
# sp: all-to-all comminucation when introducing sequence parallel
|
||||
if sp_mode == "all_to_all":
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
|
||||
# attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
|
||||
else:
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
if self.config.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output, None, past_key_value
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
|
||||
def get_llama_model_forward_for_flash_attn(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
||||
logger = logging.get_logger(__name__)
|
||||
assert shard_config.enable_flash_attention, "Flash Attention is not enabled."
|
||||
|
||||
def forward(
|
||||
self: LlamaModel,
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
|
@ -512,112 +595,122 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
|
|||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# embed positions
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# in this case, attention_mask is a dict rather than a tensor
|
||||
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
|
||||
attention_mask = ColoAttention.prepare_attn_kwargs(
|
||||
mask_shape, hidden_states.dtype, hidden_states.device, q_padding_mask=attention_mask, is_causal=True
|
||||
)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
past_seen_tokens = 0
|
||||
seq_len = inputs_embeds.shape[1]
|
||||
if use_cache: # kept for BC (cache positions)
|
||||
if not isinstance(past_key_values, StaticCache):
|
||||
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||
past_seen_tokens = past_key_values.get_seq_length()
|
||||
if cache_position is None:
|
||||
if isinstance(past_key_values, StaticCache):
|
||||
raise ValueError("cache_position is a required argument when using StaticCache.")
|
||||
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_len, device=inputs_embeds.device)
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.unsqueeze(0)
|
||||
|
||||
# in this case, attention_mask is a dict rather than a tensor
|
||||
if shard_config.enable_flash_attention:
|
||||
mask_shape = (inputs_embeds.shape[0], 1, past_seen_tokens + seq_len, past_seen_tokens + seq_len)
|
||||
attention_mask = ColoAttention.prepare_attn_kwargs(
|
||||
mask_shape,
|
||||
inputs_embeds.dtype,
|
||||
inputs_embeds.device,
|
||||
q_padding_mask=attention_mask,
|
||||
is_causal=True,
|
||||
)
|
||||
else:
|
||||
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
||||
|
||||
if sp_mode in ["ring", "split_gather"]:
|
||||
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
|
||||
elif sp_mode == "all_to_all":
|
||||
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
next_decoder_cache = None
|
||||
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
for decoder_layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
cache_position,
|
||||
)
|
||||
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
if sp_mode == "ring" or sp_mode == "split_gather":
|
||||
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
|
||||
elif sp_mode == "all_to_all":
|
||||
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = (
|
||||
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
||||
)
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
|
@ -643,6 +736,7 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
|||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
|
@ -687,6 +781,7 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
|||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
|
@ -706,11 +801,14 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
|
|||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
|
||||
new_vocab_size = logits.shape[-1]
|
||||
shift_logits = shift_logits.view(-1, new_vocab_size)
|
||||
loss = cross_entropy_1d(
|
||||
shift_logits, shift_labels, process_group=shard_config.tensor_parallel_process_group
|
||||
shift_logits,
|
||||
shift_labels,
|
||||
process_group=shard_config.tensor_parallel_process_group,
|
||||
vocab_size=self.lm_head.out_features,
|
||||
dtype=self.model.dtype,
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
|
|
Loading…
Reference in New Issue