mirror of https://github.com/hpcaitech/ColossalAI
[checkpointio] support huggingface from_pretrained for all plugins (#4606)
parent
0a94fcd351
commit
e79b1e80e2
@ -1,129 +0,0 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.optim import Adam
|
||||
from utils import shared_tempdir
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import HybridParallelPlugin
|
||||
from colossalai.shardformer.layer.utils import Randomizer
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import (
|
||||
check_state_dict_equal,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
def exam_from_pretrained(model_fn,
|
||||
data_gen_fn,
|
||||
output_transform_fn,
|
||||
loss_fn,
|
||||
test_config,
|
||||
shard=True,
|
||||
size_per_shard=32):
|
||||
|
||||
def _criterion(outputs, inputs):
|
||||
outputs = output_transform_fn(outputs)
|
||||
loss = criterion(outputs)
|
||||
return loss
|
||||
|
||||
def _preprocess_data(data):
|
||||
if booster.plugin.stage_manager is not None:
|
||||
for k, v in data.items():
|
||||
if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__:
|
||||
new_shape = [1] * v.dim()
|
||||
new_shape[0] = 4
|
||||
data[k] = v.to('cuda').repeat(*new_shape)
|
||||
return iter([data])
|
||||
else:
|
||||
return {k: v.cuda() for k, v in data.items()}
|
||||
|
||||
model = model_fn()
|
||||
optimizer = Adam((model.parameters()), lr=0.001)
|
||||
criterion = loss_fn
|
||||
plugin = HybridParallelPlugin(**test_config)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||||
|
||||
data = data_gen_fn()
|
||||
model.train()
|
||||
if booster.plugin.stage_manager is not None:
|
||||
booster.execute_pipeline(_preprocess_data(data),
|
||||
model,
|
||||
_criterion,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
return_outputs=False)
|
||||
else:
|
||||
output = model(**_preprocess_data(data))
|
||||
loss = criterion(output)
|
||||
optimizer.backward(loss)
|
||||
|
||||
optimizer.step()
|
||||
|
||||
with shared_tempdir() as tempdir:
|
||||
|
||||
model_ckpt_path = f"{tempdir}/model"
|
||||
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
|
||||
dist.barrier()
|
||||
|
||||
new_model = model.unwrap().__class__.from_pretrained(model_ckpt_path)
|
||||
new_optimizer = Adam(new_model.parameters(), lr=1e-3)
|
||||
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
|
||||
|
||||
check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict(), False)
|
||||
|
||||
Randomizer.reset_index()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@clear_cache_before_run()
|
||||
@parameterize('test_config', [{
|
||||
'tp_size': 4,
|
||||
'pp_size': 1,
|
||||
'precision': 'fp32',
|
||||
}, {
|
||||
'tp_size': 2,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'precision': 'fp16',
|
||||
'initial_scale': 1
|
||||
}, {
|
||||
'tp_size': 2,
|
||||
'pp_size': 1,
|
||||
'zero_stage': 2,
|
||||
'precision': 'fp16',
|
||||
'initial_scale': 1
|
||||
}, {
|
||||
'tp_size': 1,
|
||||
'pp_size': 2,
|
||||
'num_microbatches': 4,
|
||||
'zero_stage': 1,
|
||||
'precision': 'fp16',
|
||||
'initial_scale': 1
|
||||
}])
|
||||
def run_test(test_config):
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
exam_from_pretrained(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||
clear_layout_converter()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_test()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_huggingface_compatibility(world_size):
|
||||
spawn(run_dist, world_size)
|
@ -0,0 +1,83 @@
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from utils import shared_tempdir
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import (
|
||||
check_state_dict_equal,
|
||||
clear_cache_before_run,
|
||||
parameterize,
|
||||
rerun_if_address_is_in_use,
|
||||
spawn,
|
||||
)
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
@clear_cache_before_run()
|
||||
@parameterize('model_name', ['transformers_gpt'])
|
||||
@parameterize('plugin_type', ['ddp', 'zero', 'gemini'])
|
||||
def exam_from_pretrained(plugin_type: str, model_name: str, shard=True, size_per_shard=32):
|
||||
(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
_) = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
criterion = loss_fn
|
||||
|
||||
if plugin_type == 'ddp':
|
||||
plugin = TorchDDPPlugin()
|
||||
elif plugin_type == 'zero':
|
||||
plugin = LowLevelZeroPlugin(stage=2, max_norm=1.0, initial_scale=32)
|
||||
elif plugin_type == 'gemini':
|
||||
plugin = GeminiPlugin(placement_policy='cuda', precision="fp16", initial_scale=32)
|
||||
else:
|
||||
raise ValueError(f"Plugin with type {plugin_type} is invalid, please check your argument.")
|
||||
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
model = model_fn().cuda()
|
||||
model_huggingface_cls = model.__class__
|
||||
optimizer = HybridAdam(model.parameters(), lr=0.001)
|
||||
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||||
|
||||
data = data_gen_fn()
|
||||
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
|
||||
output = model(**data)
|
||||
loss = criterion(output)
|
||||
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.step()
|
||||
|
||||
with shared_tempdir() as tempdir:
|
||||
|
||||
model_ckpt_path = f"{tempdir}/model"
|
||||
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
|
||||
dist.barrier()
|
||||
|
||||
new_model = model_huggingface_cls.from_pretrained(model_ckpt_path)
|
||||
new_model = new_model.cuda()
|
||||
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
|
||||
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
|
||||
|
||||
if plugin_type == 'gemini':
|
||||
check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False),
|
||||
new_model.unwrap().state_dict(only_rank_0=False), False)
|
||||
else:
|
||||
check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict(), False)
|
||||
dist.barrier()
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = {}
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
exam_from_pretrained()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_huggingface_compatibility(world_size):
|
||||
spawn(run_dist, world_size)
|
Loading…
Reference in new issue