[checkpointio] support huggingface from_pretrained for all plugins (#4606)

pull/4617/head
Baizhou Zhang 1 year ago committed by GitHub
parent 0a94fcd351
commit e79b1e80e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -18,6 +18,7 @@ from colossalai.checkpoint_io.utils import (
get_optimizer_base_filenames,
get_shard_filename,
load_shard_state_dict,
save_config_file,
save_state_dict,
save_state_dict_shards,
)
@ -111,6 +112,7 @@ class GeminiCheckpointIO(GeneralCheckpointIO):
if self.coordinator.is_master():
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
save_config_file(model.module, checkpoint_path)
logging.info(f"The model is split into checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {save_index_file}.")

@ -23,6 +23,7 @@ from .utils import (
load_state_dict,
load_state_dict_into_model,
load_states_into_optimizer,
save_config_file,
save_param_groups,
save_state_dict,
save_state_dict_shards,
@ -185,6 +186,7 @@ class GeneralCheckpointIO(CheckpointIO):
index_file.append_meta_data("total_size", total_size)
index_file.write_index_file(save_index_file)
save_config_file(model, checkpoint_path, is_master=True)
logging.info(f"The model is going to be split to checkpoint shards. "
f"You can find where each parameters has been saved in the "
f"index located at {save_index_file}.")

@ -1,129 +0,0 @@
import pytest
import torch
import torch.distributed as dist
from torch.optim import Adam
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import (
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
def exam_from_pretrained(model_fn,
data_gen_fn,
output_transform_fn,
loss_fn,
test_config,
shard=True,
size_per_shard=32):
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
def _preprocess_data(data):
if booster.plugin.stage_manager is not None:
for k, v in data.items():
if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 4
data[k] = v.to('cuda').repeat(*new_shape)
return iter([data])
else:
return {k: v.cuda() for k, v in data.items()}
model = model_fn()
optimizer = Adam((model.parameters()), lr=0.001)
criterion = loss_fn
plugin = HybridParallelPlugin(**test_config)
booster = Booster(plugin=plugin)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
model.train()
if booster.plugin.stage_manager is not None:
booster.execute_pipeline(_preprocess_data(data),
model,
_criterion,
optimizer,
return_loss=True,
return_outputs=False)
else:
output = model(**_preprocess_data(data))
loss = criterion(output)
optimizer.backward(loss)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
dist.barrier()
new_model = model.unwrap().__class__.from_pretrained(model_ckpt_path)
new_optimizer = Adam(new_model.parameters(), lr=1e-3)
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict(), False)
Randomizer.reset_index()
torch.cuda.empty_cache()
@clear_cache_before_run()
@parameterize('test_config', [{
'tp_size': 4,
'pp_size': 1,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'precision': 'fp16',
'initial_scale': 1
}, {
'tp_size': 2,
'pp_size': 1,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}, {
'tp_size': 1,
'pp_size': 2,
'num_microbatches': 4,
'zero_stage': 1,
'precision': 'fp16',
'initial_scale': 1
}])
def run_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
exam_from_pretrained(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
torch.cuda.empty_cache()
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_test()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [4])
@rerun_if_address_is_in_use()
def test_huggingface_compatibility(world_size):
spawn(run_dist, world_size)

@ -0,0 +1,83 @@
import os
import pytest
import torch
import torch.distributed as dist
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import (
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
@clear_cache_before_run()
@parameterize('model_name', ['transformers_gpt'])
@parameterize('plugin_type', ['ddp', 'zero', 'gemini'])
def exam_from_pretrained(plugin_type: str, model_name: str, shard=True, size_per_shard=32):
(model_fn, data_gen_fn, output_transform_fn, loss_fn,
_) = next(iter(model_zoo.get_sub_registry(model_name).values()))
criterion = loss_fn
if plugin_type == 'ddp':
plugin = TorchDDPPlugin()
elif plugin_type == 'zero':
plugin = LowLevelZeroPlugin(stage=2, max_norm=1.0, initial_scale=32)
elif plugin_type == 'gemini':
plugin = GeminiPlugin(placement_policy='cuda', precision="fp16", initial_scale=32)
else:
raise ValueError(f"Plugin with type {plugin_type} is invalid, please check your argument.")
booster = Booster(plugin=plugin)
model = model_fn().cuda()
model_huggingface_cls = model.__class__
optimizer = HybridAdam(model.parameters(), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
output = model(**data)
loss = criterion(output)
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
dist.barrier()
new_model = model_huggingface_cls.from_pretrained(model_ckpt_path)
new_model = new_model.cuda()
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
if plugin_type == 'gemini':
check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False),
new_model.unwrap().state_dict(only_rank_0=False), False)
else:
check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict(), False)
dist.barrier()
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_from_pretrained()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@rerun_if_address_is_in_use()
def test_huggingface_compatibility(world_size):
spawn(run_dist, world_size)
Loading…
Cancel
Save