mirror of https://github.com/hpcaitech/ColossalAI
[example] add finetune bert with booster example (#3693)
parent
65bdc3159f
commit
d556648885
|
@ -0,0 +1,33 @@
|
|||
# Finetune BERT on GLUE
|
||||
|
||||
## 🚀 Quick Start
|
||||
|
||||
This example provides a training script, which provides an example of finetuning BERT on GLUE dataset.
|
||||
|
||||
- Training Arguments
|
||||
- `-t`, `--task`: GLUE task to run. Defaults to `mrpc`.
|
||||
- `-p`, `--plugin`: Plugin to use. Choices: `torch_ddp`, `torch_ddp_fp16`, `gemini`, `low_level_zero`. Defaults to `torch_ddp`.
|
||||
- `--target_f1`: Target f1 score. Raise exception if not reached. Defaults to `None`.
|
||||
|
||||
|
||||
### Train
|
||||
|
||||
```bash
|
||||
# train with torch DDP with fp32
|
||||
colossalai run --nproc_per_node 4 finetune.py
|
||||
|
||||
# train with torch DDP with mixed precision training
|
||||
colossalai run --nproc_per_node 4 finetune.py -p torch_ddp_fp16
|
||||
|
||||
# train with gemini
|
||||
colossalai run --nproc_per_node 4 finetune.py -p gemini
|
||||
|
||||
# train with low level zero
|
||||
colossalai run --nproc_per_node 4 finetune.py -p low_level_zero
|
||||
```
|
||||
|
||||
Expected F1-score will be:
|
||||
|
||||
| Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 | Booster Gemini | Booster Low Level Zero |
|
||||
| ----------------- | ------------------------ | --------------------- | --------------------- |--------------- | ---------------------- |
|
||||
| bert-base-uncased | 0.86 | 0.88 | 0.87 | 0.88 | 0.89 |
|
|
@ -0,0 +1,127 @@
|
|||
import datasets
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer
|
||||
|
||||
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
|
||||
|
||||
|
||||
class GLUEDataBuilder:
|
||||
|
||||
task_text_field_map = {
|
||||
"cola": ["sentence"],
|
||||
"sst2": ["sentence"],
|
||||
"mrpc": ["sentence1", "sentence2"],
|
||||
"qqp": ["question1", "question2"],
|
||||
"stsb": ["sentence1", "sentence2"],
|
||||
"mnli": ["premise", "hypothesis"],
|
||||
"qnli": ["question", "sentence"],
|
||||
"rte": ["sentence1", "sentence2"],
|
||||
"wnli": ["sentence1", "sentence2"],
|
||||
"ax": ["premise", "hypothesis"],
|
||||
}
|
||||
|
||||
glue_task_num_labels = {
|
||||
"cola": 2,
|
||||
"sst2": 2,
|
||||
"mrpc": 2,
|
||||
"qqp": 2,
|
||||
"stsb": 1,
|
||||
"mnli": 3,
|
||||
"qnli": 2,
|
||||
"rte": 2,
|
||||
"wnli": 2,
|
||||
"ax": 3,
|
||||
}
|
||||
|
||||
loader_columns = [
|
||||
"datasets_idx",
|
||||
"input_ids",
|
||||
"token_type_ids",
|
||||
"attention_mask",
|
||||
"start_positions",
|
||||
"end_positions",
|
||||
"labels",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name_or_path: str,
|
||||
plugin: DPPluginBase,
|
||||
task_name: str = "mrpc",
|
||||
max_seq_length: int = 128,
|
||||
train_batch_size: int = 32,
|
||||
eval_batch_size: int = 32,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.model_name_or_path = model_name_or_path
|
||||
self.task_name = task_name
|
||||
self.max_seq_length = max_seq_length
|
||||
self.train_batch_size = train_batch_size
|
||||
self.eval_batch_size = eval_batch_size
|
||||
self.plugin = plugin
|
||||
|
||||
self.text_fields = self.task_text_field_map[task_name]
|
||||
self.num_labels = self.glue_task_num_labels[task_name]
|
||||
self.tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True)
|
||||
self.setup()
|
||||
|
||||
def setup(self):
|
||||
self.dataset = datasets.load_dataset("glue", self.task_name)
|
||||
|
||||
for split in self.dataset.keys():
|
||||
self.dataset[split] = self.dataset[split].map(
|
||||
self.convert_to_features,
|
||||
batched=True,
|
||||
remove_columns=["label"],
|
||||
)
|
||||
self.columns = [c for c in self.dataset[split].column_names if c in self.loader_columns]
|
||||
self.dataset[split].set_format(type="torch", columns=self.columns)
|
||||
|
||||
self.eval_splits = [x for x in self.dataset.keys() if "validation" in x]
|
||||
|
||||
def prepare_data(self):
|
||||
datasets.load_dataset("glue", self.task_name)
|
||||
AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=True)
|
||||
|
||||
def train_dataloader(self):
|
||||
return self.plugin.prepare_train_dataloader(self.dataset["train"],
|
||||
batch_size=self.train_batch_size,
|
||||
shuffle=True,
|
||||
drop_last=True)
|
||||
|
||||
def val_dataloader(self):
|
||||
if len(self.eval_splits) == 1:
|
||||
return self.plugin.prepare_train_dataloader(self.dataset["validation"], batch_size=self.eval_batch_size)
|
||||
elif len(self.eval_splits) > 1:
|
||||
return [
|
||||
self.plugin.prepare_train_dataloader(self.dataset[x], batch_size=self.eval_batch_size)
|
||||
for x in self.eval_splits
|
||||
]
|
||||
|
||||
def test_dataloader(self):
|
||||
if len(self.eval_splits) == 1:
|
||||
return self.plugin.prepare_train_dataloader(self.dataset["test"], batch_size=self.eval_batch_size)
|
||||
elif len(self.eval_splits) > 1:
|
||||
return [
|
||||
self.plugin.prepare_train_dataloader(self.dataset[x], batch_size=self.eval_batch_size)
|
||||
for x in self.eval_splits
|
||||
]
|
||||
|
||||
def convert_to_features(self, example_batch):
|
||||
|
||||
# Either encode single sentence or sentence pairs
|
||||
if len(self.text_fields) > 1:
|
||||
texts_or_text_pairs = list(zip(example_batch[self.text_fields[0]], example_batch[self.text_fields[1]]))
|
||||
else:
|
||||
texts_or_text_pairs = example_batch[self.text_fields[0]]
|
||||
|
||||
# Tokenize the text/text pairs
|
||||
features = self.tokenizer.batch_encode_plus(texts_or_text_pairs,
|
||||
max_length=self.max_seq_length,
|
||||
padding='max_length',
|
||||
truncation=True)
|
||||
|
||||
# Rename label to labels to make it easier to pass to model forward
|
||||
features["labels"] = example_batch["label"]
|
||||
|
||||
return features
|
|
@ -0,0 +1,198 @@
|
|||
import argparse
|
||||
from typing import List, Union
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from data import GLUEDataBuilder
|
||||
from torch.optim import Optimizer
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoConfig, BertForSequenceClassification, get_linear_schedule_with_warmup
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
# ==============================
|
||||
# Prepare Hyperparameters
|
||||
# ==============================
|
||||
NUM_EPOCHS = 3
|
||||
BATCH_SIZE = 32
|
||||
LEARNING_RATE = 2.4e-5
|
||||
WEIGHT_DECAY = 0.01
|
||||
WARMUP_FRACTION = 0.1
|
||||
|
||||
|
||||
def move_to_cuda(batch):
|
||||
return {k: v.cuda() for k, v in batch.items()}
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def evaluate(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, task_name: str,
|
||||
eval_splits: List[str], coordinator: DistCoordinator):
|
||||
metric = datasets.load_metric("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
|
||||
model.eval()
|
||||
|
||||
def evaluate_subset(dataloader: DataLoader):
|
||||
accum_loss = torch.zeros(1, device=get_current_device())
|
||||
for batch in dataloader:
|
||||
batch = move_to_cuda(batch)
|
||||
outputs = model(**batch)
|
||||
val_loss, logits = outputs[:2]
|
||||
accum_loss.add_(val_loss)
|
||||
|
||||
if num_labels > 1:
|
||||
preds = torch.argmax(logits, axis=1)
|
||||
elif num_labels == 1:
|
||||
preds = logits.squeeze()
|
||||
|
||||
labels = batch["labels"]
|
||||
|
||||
metric.add_batch(predictions=preds, references=labels)
|
||||
|
||||
results = metric.compute()
|
||||
dist.all_reduce(accum_loss.div_(len(dataloader)))
|
||||
if coordinator.is_master():
|
||||
results['loss'] = accum_loss.item() / coordinator.world_size
|
||||
return results
|
||||
|
||||
if isinstance(test_dataloader, DataLoader):
|
||||
return evaluate_subset(test_dataloader)
|
||||
else:
|
||||
assert len(test_dataloader) == len(eval_splits)
|
||||
final_results = {}
|
||||
for split, sub_loader in zip(eval_splits, test_dataloader):
|
||||
results = evaluate_subset(sub_loader)
|
||||
final_results.update({f'{k}_{split}': v for k, v in results.items()})
|
||||
return final_results
|
||||
|
||||
|
||||
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, lr_scheduler, train_dataloader: DataLoader,
|
||||
booster: Booster, coordinator: DistCoordinator):
|
||||
model.train()
|
||||
with tqdm(train_dataloader, desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]', disable=not coordinator.is_master()) as pbar:
|
||||
for batch in pbar:
|
||||
# Forward pass
|
||||
batch = move_to_cuda(batch)
|
||||
outputs = model(**batch)
|
||||
loss = outputs[0]
|
||||
|
||||
# Backward and optimize
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
# Print log info
|
||||
pbar.set_postfix({'loss': loss.item()})
|
||||
|
||||
|
||||
def main():
|
||||
# ==============================
|
||||
# Parse Arguments
|
||||
# ==============================
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-t', '--task', default='mrpc', help="GLUE task to run")
|
||||
parser.add_argument('-p',
|
||||
'--plugin',
|
||||
type=str,
|
||||
default='torch_ddp',
|
||||
choices=['torch_ddp', 'torch_ddp_fp16', 'gemini', 'low_level_zero'],
|
||||
help="plugin to use")
|
||||
parser.add_argument('--target_f1', type=float, default=None, help="target f1 score. Raise exception if not reached")
|
||||
args = parser.parse_args()
|
||||
|
||||
# ==============================
|
||||
# Launch Distributed Environment
|
||||
# ==============================
|
||||
colossalai.launch_from_torch(config={}, seed=42)
|
||||
coordinator = DistCoordinator()
|
||||
|
||||
# local_batch_size = BATCH_SIZE // coordinator.world_size
|
||||
lr = LEARNING_RATE * coordinator.world_size
|
||||
model_name = 'bert-base-uncased'
|
||||
|
||||
# ==============================
|
||||
# Instantiate Plugin and Booster
|
||||
# ==============================
|
||||
booster_kwargs = {}
|
||||
if args.plugin == 'torch_ddp_fp16':
|
||||
booster_kwargs['mixed_precision'] = 'fp16'
|
||||
if args.plugin.startswith('torch_ddp'):
|
||||
plugin = TorchDDPPlugin()
|
||||
elif args.plugin == 'gemini':
|
||||
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5)
|
||||
elif args.plugin == 'low_level_zero':
|
||||
plugin = LowLevelZeroPlugin(initial_scale=2**5)
|
||||
|
||||
booster = Booster(plugin=plugin, **booster_kwargs)
|
||||
|
||||
# ==============================
|
||||
# Prepare Dataloader
|
||||
# ==============================
|
||||
data_builder = GLUEDataBuilder(model_name,
|
||||
plugin,
|
||||
args.task,
|
||||
train_batch_size=BATCH_SIZE,
|
||||
eval_batch_size=BATCH_SIZE)
|
||||
train_dataloader = data_builder.train_dataloader()
|
||||
test_dataloader = data_builder.test_dataloader()
|
||||
|
||||
# ====================================
|
||||
# Prepare model, optimizer
|
||||
# ====================================
|
||||
# bert pretrained model
|
||||
config = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels)
|
||||
model = BertForSequenceClassification.from_pretrained(model_name, config=config)
|
||||
|
||||
# optimizer
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": WEIGHT_DECAY,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
|
||||
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
|
||||
|
||||
# lr scheduler
|
||||
total_steps = len(train_dataloader) * NUM_EPOCHS
|
||||
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=total_steps,
|
||||
)
|
||||
|
||||
# ==============================
|
||||
# Boost with ColossalAI
|
||||
# ==============================
|
||||
model, optimizer, _, _, lr_scheduler = booster.boost(model, optimizer, lr_scheduler=lr_scheduler)
|
||||
|
||||
# ==============================
|
||||
# Train model
|
||||
# ==============================
|
||||
for epoch in range(NUM_EPOCHS):
|
||||
train_epoch(epoch, model, optimizer, lr_scheduler, train_dataloader, booster, coordinator)
|
||||
|
||||
results = evaluate(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits,
|
||||
coordinator)
|
||||
|
||||
if coordinator.is_master():
|
||||
print(results)
|
||||
if args.target_f1 is not None and 'f1' in results:
|
||||
assert results['f1'] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,6 @@
|
|||
#!/bin/bash
|
||||
set -xe
|
||||
|
||||
for plugin in "torch_ddp" "torch_ddp_fp16" "gemini" "low_level_zero"; do
|
||||
torchrun --standalone --nproc_per_node 4 finetune.py --target_f1 0.86 --plugin $plugin
|
||||
done
|
Loading…
Reference in New Issue