mirror of https://github.com/hpcaitech/ColossalAI
fix some spelling error with applications/Chat/examples/ (#3692)
* fix spelling error with examples/comminity/ * fix spelling error with example/pull/3695/head
parent
d0915f54f4
commit
65bdc3159f
|
@ -24,7 +24,6 @@
|
|||
- [LLaMA](#llama)
|
||||
- [Add your own models](#add-your-own-models)
|
||||
- [Actor model](#actor-model)
|
||||
- [LM model](#lm-model)
|
||||
- [Reward model](#reward-model)
|
||||
- [Critic model](#critic-model)
|
||||
|
||||
|
@ -150,7 +149,7 @@ torchrun --standalone --nproc_per_node=4 train_prompts.py \
|
|||
--strategy colossalai_zero2 \
|
||||
--prompt_dataset /path/to/your/prompt_dataset \
|
||||
--pretrain_dataset /path/to/your/pretrain_dataset \
|
||||
--rm_pretrain /your/pretrain/rm/defination \
|
||||
--rm_pretrain /your/pretrain/rm/definition \
|
||||
--rm_path /your/rm/model/path
|
||||
```
|
||||
|
||||
|
|
|
@ -188,7 +188,7 @@ class EasySFTDataset(Dataset):
|
|||
else:
|
||||
raw_input_ids.append(encoded_ids)
|
||||
|
||||
grouped_inpup_ids = []
|
||||
grouped_input_ids = []
|
||||
current_input_ids = []
|
||||
attention_mask = []
|
||||
if tokenizer.pad_token_id is None:
|
||||
|
@ -199,7 +199,7 @@ class EasySFTDataset(Dataset):
|
|||
#pad the current_input_ids to max_length with tokenizer.pad_token_id
|
||||
padded_length = max_length - len(current_input_ids)
|
||||
current_input_ids.extend([tokenizer.pad_token_id] * padded_length)
|
||||
grouped_inpup_ids.append(torch.tensor(current_input_ids, dtype=torch.long))
|
||||
grouped_input_ids.append(torch.tensor(current_input_ids, dtype=torch.long))
|
||||
attention_mask.append(
|
||||
torch.tensor([1] * (max_length - padded_length) + [0] * padded_length, dtype=torch.long))
|
||||
current_input_ids = []
|
||||
|
@ -208,7 +208,7 @@ class EasySFTDataset(Dataset):
|
|||
if len(current_input_ids) > 0:
|
||||
padded_length = max_length - len(current_input_ids)
|
||||
current_input_ids.extend([tokenizer.pad_token_id] * padded_length)
|
||||
grouped_inpup_ids.append(torch.tensor(current_input_ids, dtype=torch.long))
|
||||
grouped_input_ids.append(torch.tensor(current_input_ids, dtype=torch.long))
|
||||
attention_mask.append(
|
||||
torch.tensor([1] * (max_length - padded_length) + [0] * padded_length, dtype=torch.long))
|
||||
else:
|
||||
|
@ -218,8 +218,8 @@ class EasySFTDataset(Dataset):
|
|||
input_ids.extend([tokenizer.pad_token_id] * padded_length)
|
||||
attention_mask.append(
|
||||
torch.tensor([1] * (max_length - padded_length) + [0] * padded_length, dtype=torch.long))
|
||||
grouped_inpup_ids.append(torch.tensor(input_ids, dtype=torch.long))
|
||||
self.input_ids = grouped_inpup_ids
|
||||
grouped_input_ids.append(torch.tensor(input_ids, dtype=torch.long))
|
||||
self.input_ids = grouped_input_ids
|
||||
self.labels = copy.deepcopy(self.input_ids)
|
||||
self.file_name = data_file
|
||||
self.attention_mask = attention_mask
|
||||
|
|
|
@ -41,7 +41,7 @@ def main(args):
|
|||
# configure model
|
||||
if args.model == 'bloom':
|
||||
# initial_model = BLOOMActor(pretrained=args.pretrain)
|
||||
print('Using peft lora to load Bloom model as inital_model')
|
||||
print('Using peft lora to load Bloom model as initial_model')
|
||||
initial_model = BLOOMActor(pretrained=args.pretrain, lora_path=args.sft_lora_path)
|
||||
print('Using peft lora to load Bloom model as initial_model (Done)')
|
||||
else:
|
||||
|
|
|
@ -86,7 +86,7 @@ def train(args):
|
|||
|
||||
if args.strategy == 'colossalai_gemini':
|
||||
# this is a hack to deal with the resized embedding
|
||||
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatiblity
|
||||
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatibility
|
||||
for name, param in model.named_parameters():
|
||||
if not isinstance(param, ColoParameter):
|
||||
sub_module_name = '.'.join(name.split('.')[:-1])
|
||||
|
|
|
@ -84,7 +84,7 @@ def train(args):
|
|||
|
||||
if args.strategy == 'colossalai_gemini':
|
||||
# this is a hack to deal with the resized embedding
|
||||
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatiblity
|
||||
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatibility
|
||||
for name, param in model.named_parameters():
|
||||
if not isinstance(param, ColoParameter):
|
||||
sub_module_name = '.'.join(name.split('.')[:-1])
|
||||
|
|
Loading…
Reference in New Issue