|
|
|
@ -10,10 +10,11 @@ from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_ad
|
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
|
from tests.test_shardformer.test_model._utils import (
|
|
|
|
|
build_model_from_hybrid_plugin,
|
|
|
|
|
check_grad,
|
|
|
|
|
check_all_grad_tensors,
|
|
|
|
|
check_loss,
|
|
|
|
|
check_output_hidden_state,
|
|
|
|
|
check_weight,
|
|
|
|
|
get_grad_tensors_for_check,
|
|
|
|
|
run_forward_backward_with_hybrid_plugin,
|
|
|
|
|
unwrap_model,
|
|
|
|
|
)
|
|
|
|
@ -33,18 +34,9 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
|
|
|
|
output_transform_fn,
|
|
|
|
|
criterion,
|
|
|
|
|
booster)
|
|
|
|
|
|
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
|
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
|
# check last hidden state & loss
|
|
|
|
|
if stage_manager is None or stage_manager.is_last_stage():
|
|
|
|
|
if test_config['precision'] == 'fp32':
|
|
|
|
|
atol, rtol = 1e-5, 1e-3
|
|
|
|
|
else:
|
|
|
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
|
if org_model.__class__.__name__ == 'BertModel':
|
|
|
|
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
|
bert = unwrap_model(org_model, 'BertModel', 'bert')
|
|
|
|
|
sharded_bert = unwrap_model(sharded_model, 'BertModel', 'bert')
|
|
|
|
@ -52,17 +44,48 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
|
|
|
|
col_layer_for_check = ['encoder.layer[0].output.dense']
|
|
|
|
|
row_layer_for_check = ['embeddings.word_embeddings', 'encoder.layer[0].intermediate.dense']
|
|
|
|
|
|
|
|
|
|
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
|
|
|
|
|
grads_to_check = {}
|
|
|
|
|
if test_config['precision'] == 'fp32':
|
|
|
|
|
atol, rtol = 1e-4, 1e-3
|
|
|
|
|
else:
|
|
|
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
|
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
|
|
|
|
|
check_grad(bert, sharded_bert, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
|
|
|
|
check_grad(bert, sharded_bert, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)
|
|
|
|
|
|
|
|
|
|
# check weights after optimizer.step()
|
|
|
|
|
col_layer_grads = get_grad_tensors_for_check(bert,
|
|
|
|
|
sharded_bert,
|
|
|
|
|
col_layer_for_check,
|
|
|
|
|
tp_group,
|
|
|
|
|
atol=atol,
|
|
|
|
|
rtol=rtol,
|
|
|
|
|
dim=1,
|
|
|
|
|
verbose=False)
|
|
|
|
|
row_layer_grads = get_grad_tensors_for_check(bert,
|
|
|
|
|
sharded_bert,
|
|
|
|
|
row_layer_for_check,
|
|
|
|
|
tp_group,
|
|
|
|
|
atol=atol,
|
|
|
|
|
rtol=rtol,
|
|
|
|
|
dim=0,
|
|
|
|
|
verbose=False)
|
|
|
|
|
grads_to_check.update(col_layer_grads)
|
|
|
|
|
grads_to_check.update(row_layer_grads)
|
|
|
|
|
|
|
|
|
|
# optimizer executes step
|
|
|
|
|
org_optimizer.step()
|
|
|
|
|
sharded_optimizer.step()
|
|
|
|
|
|
|
|
|
|
# check last hidden state & loss
|
|
|
|
|
if stage_manager is None or stage_manager.is_last_stage():
|
|
|
|
|
if test_config['precision'] == 'fp32':
|
|
|
|
|
atol, rtol = 1e-5, 1e-3
|
|
|
|
|
else:
|
|
|
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
|
if org_model.__class__.__name__ == 'BertModel':
|
|
|
|
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
|
# check weights
|
|
|
|
|
if test_config['precision'] == 'fp32':
|
|
|
|
|
atol, rtol = 5e-3, 1e-3
|
|
|
|
|
else:
|
|
|
|
@ -70,6 +93,9 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
|
|
|
|
if stage_manager is None or stage_manager.is_first_stage():
|
|
|
|
|
check_weight(bert, sharded_bert, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
|
|
|
|
|
|
|
|
|
# check grads
|
|
|
|
|
check_all_grad_tensors(grads_to_check)
|
|
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|