[profiler] primary memory tracer

pull/394/head
Jie Zhu 2022-03-04 09:35:23 +08:00 committed by Frank Lee
parent dfc3fafe89
commit d344689274
4 changed files with 93 additions and 19 deletions

View File

@ -26,6 +26,8 @@ class Engine:
:type gradient_handlers: list
:param clip_grad_norm: The norm of gradient clipping
:type clip_grad_norm: float, optional
:param ophook_list: List of ophook
:type ophook_list: list
:param verbose: whether to display log info
:type verbose: bool
"""

View File

@ -1,3 +1,5 @@
from re import S
from colossalai.context.parallel_mode import ParallelMode
import torch
from . import BaseOpHook
from concurrent.futures import ThreadPoolExecutor
@ -5,18 +7,20 @@ from colossalai.registry import OPHOOKS
from colossalai.logging import get_dist_logger
from time import sleep, time
import pickle
from typing import Union, Optional
from colossalai.core import global_context as gpc
def get_cuda_memory_used(device):
def get_cuda_memory_used(device: Optional[torch.device]) -> int:
"""
Get the free memory info of device.
Notice that for CPU, this function will return 1/N of the total free memory,
where N is the world size.
"""
ret = torch.cuda.memory_allocated()
ret: int = torch.cuda.memory_allocated(device)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats()
torch.cuda.reset_peak_memory_stats(device)
return ret
@ -34,6 +38,9 @@ class AsyncMemoryMonitor:
self.time_stamps = []
self.mem_stats = []
def __len__(self):
return len(self.mem_stats)
def set_interval(self, power: int):
self.interval = 1 / (10**power)
@ -74,22 +81,65 @@ class AsyncMemoryMonitor:
def save(self, filename):
with open(filename, "wb") as f:
pickle.dump(self.state_dict(), f)
def clear(self):
self.mem_stats.clear()
self.time_stamps.clear()
@OPHOOKS.register_module
class MemTracerOpHook(BaseOpHook):
def __init__(self, niter=5):
'''
Collect GPU memory usage information
Args:
warmup (int): This parameter indicates how many iterations to truncate
before profiling, e.g. set to 5 and the data will start from 6-th iteration
refreshrate (int): This parameter decides the frequency of write file.
datafile(string): the name of the stats data file
Attributes:
_warmup (int): warmup iterations
_refreshrate(int): how many iterations we shall refresh the file
_logger (colossalai.logging.logger): output log file
_curiter (int): current iteration number
_count (int): the number of times the data file was written
_data_prefix (string): the prefix of the stats data file
_rank (int): the rank of current node
'''
def __init__(self, warmup: int = 50, refreshrate: int = 10, data_prefix: str = "memstats"):
super().__init__()
self.async_mem_monitor = AsyncMemoryMonitor()
self._niter = niter
self._curiter = 0
self._logger = get_dist_logger()
self._count = 0
self._warmup = warmup
self._refreshrate = refreshrate
self._data_prefix = data_prefix
# in distributed environment
if gpc.is_initialized(ParallelMode.GLOBAL):
self._rank = gpc.get_global_rank()
else:
self._rank = 0
def _isvalid(self, module):
return module.training and self._curiter < self._niter
def _isvalid(self, module) -> bool:
assert isinstance(module, torch.nn.Module)
return module.training
def niter(self):
return self._niter
@property
def refreshrate(self) -> int:
return self._refreshrate
@property
def warmup(self) -> int:
return self._warmup
@property
def curiter(self) -> int:
return self._curiter
@property
def valid_iter(self) -> int:
return self.curiter - self.warmup
def pre_fwd_exec(self, module: torch.nn.Module, *args):
if self._isvalid(module):
@ -103,14 +153,12 @@ class MemTracerOpHook(BaseOpHook):
self._logger.debug(f'FWD POST {module.__class__.__name__}')
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
assert isinstance(module, torch.nn.Module)
if self._isvalid(module):
self.async_mem_monitor.finish()
self.async_mem_monitor.start()
self._logger.debug(f'BWD PRE {module.__class__.__name__}')
def post_bwd_exec(self, module: torch.nn.Module, input):
assert isinstance(module, torch.nn.Module)
if self._isvalid(module):
self.async_mem_monitor.finish()
self._logger.debug(f'BWD POST {module.__class__.__name__}')
@ -120,11 +168,24 @@ class MemTracerOpHook(BaseOpHook):
def post_iter(self):
self.async_mem_monitor.finish()
if self._curiter == self._niter:
self._logger.info(
f'dump a memory statistics as pickle to ./memstats.pkl')
self.save_results("memstats.pkl")
# in the warmup stage
if self._curiter < self.warmup:
# TODO: record time and adaptively change sampling rate
pass
elif self._curiter == self._warmup:
self.async_mem_monitor.clear()
else:
# every `refreshrate` times, refresh the file
if self.valid_iter != 0 and self.valid_iter % self.refreshrate == 0:
# output file info
self._logger.info(
f'dump a memory statistics as pickle to {self._dataprefix}-{self._rank}.pkl')
self.save_results()
self._count += 1
self._logger.debug(f'data file has been refreshed {self._count} times')
# finish a iteration
self._curiter += 1
def save_results(self, filename):
self.async_mem_monitor.save(filename)
def save_results(self):
datafile = f"{self._data_prefix}-{self._rank}.pkl"
self.async_mem_monitor.save(datafile)

View File

@ -19,6 +19,11 @@ class Timer:
def has_history(self):
return len(self._history) != 0
@property
def current_time(self) -> float:
synchronize()
return time.time()
def start(self):
"""Fisrtly synchronize cuda, reset the clock and then start the timer.
"""
@ -27,6 +32,11 @@ class Timer:
self._start_time = time.time()
self._started = True
def lap(self):
"""lap time and return elapsed time
"""
return self.current_time - self._start_time
def stop(self, keep_in_history: bool = False):
"""Stop the timer and record the start-stop time interval.

View File

@ -22,6 +22,7 @@ def test_load_config():
@pytest.mark.cpu
def test_load_ophooks():
dict = {'type': 'MemTracerOpHook', 'niter': 2}
dict = {'type': 'MemTracerOpHook', 'warmup': 10, 'refreshrate': 20}
ophook = build_ophooks(dict)
assert ophook.niter() == 2
assert ophook.refreshrate == 20
assert ophook.warmup == 10