mirror of https://github.com/hpcaitech/ColossalAI
192 lines
6.3 KiB
Python
192 lines
6.3 KiB
Python
from re import S
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
import torch
|
|
from . import BaseOpHook
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from colossalai.registry import OPHOOKS
|
|
from colossalai.logging import get_dist_logger
|
|
from time import sleep, time
|
|
import pickle
|
|
from typing import Union, Optional
|
|
from colossalai.core import global_context as gpc
|
|
|
|
|
|
def get_cuda_memory_used(device: Optional[torch.device]) -> int:
|
|
"""
|
|
Get the free memory info of device.
|
|
Notice that for CPU, this function will return 1/N of the total free memory,
|
|
where N is the world size.
|
|
"""
|
|
ret: int = torch.cuda.memory_allocated(device)
|
|
# get the peak memory to report correct data, so reset the counter for the next call
|
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
|
torch.cuda.reset_peak_memory_stats(device)
|
|
return ret
|
|
|
|
|
|
class AsyncMemoryMonitor:
|
|
def __init__(self, power=10):
|
|
"""
|
|
An Async Mem Monitor runing during computing.
|
|
Sampling GPU memory usage of the current GPU dev
|
|
at interval of 1/(10**power) sec.
|
|
"""
|
|
self.keep_measuring = False
|
|
self.executor = ThreadPoolExecutor(max_workers=1)
|
|
self.monitor_thread = None
|
|
self.interval = 1 / (10**power)
|
|
self.time_stamps = []
|
|
self.mem_stats = []
|
|
|
|
def __len__(self):
|
|
return len(self.mem_stats)
|
|
|
|
def set_interval(self, power: int):
|
|
self.interval = 1 / (10**power)
|
|
|
|
def is_measuring(self):
|
|
return self.keep_measuring
|
|
|
|
def start(self):
|
|
self.keep_measuring = True
|
|
self.monitor_thread = self.executor.submit(self._measure_usage)
|
|
|
|
def finish(self):
|
|
if self.keep_measuring is False:
|
|
return 0
|
|
self.keep_measuring = False
|
|
max_usage = self.monitor_thread.result()
|
|
self.monitor_thread = None
|
|
self.time_stamps.append(time())
|
|
self.mem_stats.append(max_usage)
|
|
return max_usage
|
|
|
|
def _measure_usage(self):
|
|
max_usage = 0
|
|
dev = torch.device(f"cuda:{torch.cuda.current_device()}")
|
|
while self.keep_measuring:
|
|
max_usage = max(
|
|
max_usage,
|
|
get_cuda_memory_used(dev),
|
|
)
|
|
sleep(self.interval)
|
|
return max_usage
|
|
|
|
def state_dict(self):
|
|
return {
|
|
"time_stamps": self.time_stamps,
|
|
"mem_stats": self.mem_stats,
|
|
}
|
|
|
|
def save(self, filename):
|
|
with open(filename, "wb") as f:
|
|
pickle.dump(self.state_dict(), f)
|
|
|
|
def clear(self):
|
|
self.mem_stats.clear()
|
|
self.time_stamps.clear()
|
|
|
|
|
|
@OPHOOKS.register_module
|
|
class MemTracerOpHook(BaseOpHook):
|
|
'''
|
|
Collect GPU memory usage information
|
|
|
|
Args:
|
|
warmup (int): This parameter indicates how many iterations to truncate
|
|
before profiling, e.g. set to 5 and the data will start from 6-th iteration
|
|
refreshrate (int): This parameter decides the frequency of write file.
|
|
datafile(string): the name of the stats data file
|
|
Attributes:
|
|
_warmup (int): warmup iterations
|
|
_refreshrate(int): how many iterations we shall refresh the file
|
|
_logger (colossalai.logging.logger): output log file
|
|
_curiter (int): current iteration number
|
|
_count (int): the number of times the data file was written
|
|
_data_prefix (string): the prefix of the stats data file
|
|
_rank (int): the rank of current node
|
|
'''
|
|
def __init__(self, warmup: int = 50, refreshrate: int = 10, data_prefix: str = "memstats"):
|
|
super().__init__()
|
|
self.async_mem_monitor = AsyncMemoryMonitor()
|
|
self._curiter = 0
|
|
self._logger = get_dist_logger()
|
|
self._count = 0
|
|
self._warmup = warmup
|
|
self._refreshrate = refreshrate
|
|
self._data_prefix = data_prefix
|
|
# in distributed environment
|
|
if gpc.is_initialized(ParallelMode.GLOBAL):
|
|
self._rank = gpc.get_global_rank()
|
|
else:
|
|
self._rank = 0
|
|
|
|
def _isvalid(self, module) -> bool:
|
|
assert isinstance(module, torch.nn.Module)
|
|
return module.training
|
|
|
|
@property
|
|
def refreshrate(self) -> int:
|
|
return self._refreshrate
|
|
|
|
@property
|
|
def warmup(self) -> int:
|
|
return self._warmup
|
|
|
|
@property
|
|
def curiter(self) -> int:
|
|
return self._curiter
|
|
|
|
@property
|
|
def valid_iter(self) -> int:
|
|
return self.curiter - self.warmup
|
|
|
|
def pre_fwd_exec(self, module: torch.nn.Module, *args):
|
|
if self._isvalid(module):
|
|
self.async_mem_monitor.finish()
|
|
self.async_mem_monitor.start()
|
|
self._logger.debug(f'FWD PRE {module.__class__.__name__}')
|
|
|
|
def post_fwd_exec(self, module: torch.nn.Module, *args):
|
|
if self._isvalid(module):
|
|
self.async_mem_monitor.finish()
|
|
self._logger.debug(f'FWD POST {module.__class__.__name__}')
|
|
|
|
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
|
|
if self._isvalid(module):
|
|
self.async_mem_monitor.finish()
|
|
self.async_mem_monitor.start()
|
|
self._logger.debug(f'BWD PRE {module.__class__.__name__}')
|
|
|
|
def post_bwd_exec(self, module: torch.nn.Module, input):
|
|
if self._isvalid(module):
|
|
self.async_mem_monitor.finish()
|
|
self._logger.debug(f'BWD POST {module.__class__.__name__}')
|
|
|
|
def pre_iter(self):
|
|
pass
|
|
|
|
def post_iter(self):
|
|
self.async_mem_monitor.finish()
|
|
# in the warmup stage
|
|
if self._curiter < self.warmup:
|
|
# TODO: record time and adaptively change sampling rate
|
|
pass
|
|
elif self._curiter == self._warmup:
|
|
self.async_mem_monitor.clear()
|
|
else:
|
|
# every `refreshrate` times, refresh the file
|
|
if self.valid_iter != 0 and self.valid_iter % self.refreshrate == 0:
|
|
# output file info
|
|
self._logger.info(
|
|
f'dump a memory statistics as pickle to {self._dataprefix}-{self._rank}.pkl')
|
|
self.save_results()
|
|
self._count += 1
|
|
self._logger.debug(f'data file has been refreshed {self._count} times')
|
|
# finish a iteration
|
|
self._curiter += 1
|
|
|
|
def save_results(self):
|
|
datafile = f"{self._data_prefix}-{self._rank}.pkl"
|
|
self.async_mem_monitor.save(datafile)
|