mirror of https://github.com/hpcaitech/ColossalAI
[utils] update colo tensor moving APIs (#553)
parent
c44d797072
commit
d1211148a7
|
@ -1,14 +1,14 @@
|
|||
import torch
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
|
||||
|
||||
from typing import Tuple, Union
|
||||
|
||||
_GLOBAL_CUDA_MEM_FRACTION = 1.0
|
||||
|
||||
|
||||
def colo_tensor_mem_usage(tensor: Union[torch.Tensor, ShardedTensor]) -> Tuple[int, int]:
|
||||
if isinstance(tensor, ShardedTensor):
|
||||
def colo_tensor_mem_usage(tensor: Union[torch.Tensor, StatefulTensor]) -> Tuple[int, int]:
|
||||
if issubclass(type(tensor), StatefulTensor):
|
||||
t = tensor.payload
|
||||
elif isinstance(tensor, torch.Tensor):
|
||||
t = tensor
|
||||
|
@ -46,8 +46,8 @@ def colo_cuda_memory_capacity() -> float:
|
|||
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION
|
||||
|
||||
|
||||
def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t: Union[ShardedTensor,
|
||||
torch.Tensor]) -> None:
|
||||
def colo_model_data_tensor_move(src_t: Union[StatefulTensor, torch.Tensor], tgt_t: Union[StatefulTensor,
|
||||
torch.Tensor]) -> None:
|
||||
"""
|
||||
A colossal API for model data tensor move.
|
||||
The src and target tensors could be resident on both CPU and GPU.
|
||||
|
@ -56,46 +56,44 @@ def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t
|
|||
|
||||
The function will record the communication volume between CPU and GPU.
|
||||
Args:
|
||||
t_src (Union[ShardedTensor, torch.Tensor]): source tensor
|
||||
tgt_t (Union[ShardedTensor, torch.Tensor]): target tensor
|
||||
t_src (Union[StatefulTensor, torch.Tensor]): source tensor
|
||||
tgt_t (Union[StatefulTensor, torch.Tensor]): target tensor
|
||||
"""
|
||||
if isinstance(src_t, ShardedTensor):
|
||||
if issubclass(type(src_t), StatefulTensor):
|
||||
src_t_payload = src_t.payload
|
||||
else:
|
||||
src_t_payload = src_t.data
|
||||
src_dev = src_t_payload.device
|
||||
if isinstance(tgt_t, ShardedTensor):
|
||||
if issubclass(type(tgt_t), StatefulTensor):
|
||||
tgt_t_payload = tgt_t.payload
|
||||
else:
|
||||
tgt_t_payload = tgt_t.data
|
||||
tgt_dev = tgt_t_payload.device
|
||||
|
||||
tgt_t_payload.copy_(src_t_payload)
|
||||
|
||||
# remove payload of src_t
|
||||
if isinstance(src_t, ShardedTensor):
|
||||
if issubclass(type(src_t), StatefulTensor):
|
||||
src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype))
|
||||
else:
|
||||
src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)
|
||||
|
||||
|
||||
def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor],
|
||||
target_device: torch.device,
|
||||
use_tracer: bool = True) -> None:
|
||||
def colo_model_data_tensor_move_inline(t: Union[StatefulTensor, torch.Tensor], target_device: Union[torch.device,
|
||||
int]) -> None:
|
||||
"""
|
||||
move a tensor to the target_device
|
||||
Args:
|
||||
t (Union[ShardedTensor, torch.Tensor]): the tensor be moved
|
||||
t (Union[StatefulTensor, torch.Tensor]): the tensor be moved
|
||||
"""
|
||||
|
||||
if isinstance(t, ShardedTensor):
|
||||
t_payload = t.payload
|
||||
elif isinstance(t, torch.Tensor):
|
||||
if isinstance(t, torch.Tensor):
|
||||
t_payload = t
|
||||
elif issubclass(type(t), StatefulTensor):
|
||||
t_payload = t.payload
|
||||
else:
|
||||
raise TypeError('colo_model_data_move_to_cpu dose not accept type {type(t)}')
|
||||
|
||||
assert isinstance(target_device, torch.device)
|
||||
if isinstance(target_device, int):
|
||||
target_device = torch.cuda(f'device"{target_device}')
|
||||
|
||||
# deal with torch.device('cpu') and torch.device('cpu:0)
|
||||
if t_payload.device.type == target_device.type:
|
||||
|
@ -103,16 +101,16 @@ def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor],
|
|||
t_payload.data = t_payload.data.to(target_device)
|
||||
|
||||
|
||||
def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None:
|
||||
def colo_model_data_move_to_cpu(t: Union[StatefulTensor, torch.Tensor]) -> None:
|
||||
"""colo_model_data_move_to_cpu
|
||||
|
||||
move a model data tensor from gpu to cpu
|
||||
|
||||
Args:
|
||||
t (Union[ShardedTensor, torch.Tensor]): _description_
|
||||
t (Union[StatefulTensor, torch.Tensor]): _description_
|
||||
"""
|
||||
|
||||
if isinstance(t, ShardedTensor):
|
||||
if issubclass(type(t), StatefulTensor):
|
||||
t_payload = t.payload
|
||||
elif isinstance(t, torch.Tensor):
|
||||
t_payload = t
|
||||
|
@ -126,17 +124,17 @@ def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None:
|
|||
t_payload.data = t_payload.data.cpu()
|
||||
|
||||
|
||||
def colo_model_tensor_clone(t: Union[ShardedTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor:
|
||||
def colo_model_tensor_clone(t: Union[StatefulTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor:
|
||||
"""
|
||||
Clone a model data tensor
|
||||
|
||||
Args:
|
||||
t (Union[ShardedTensor, torch.Tensor]): a model data tensor
|
||||
t (Union[StatefulTensor, torch.Tensor]): a model data tensor
|
||||
target_device (torch.device): the target device
|
||||
Returns:
|
||||
torch.Tensor: a cloned torch tensor
|
||||
"""
|
||||
t_payload = t.payload if isinstance(t, ShardedTensor) else t
|
||||
t_payload = t.payload if issubclass(type(t), StatefulTensor) else t
|
||||
|
||||
ret = t_payload.to(target_device)
|
||||
return ret
|
||||
|
|
Loading…
Reference in New Issue