diff --git a/colossalai/utils/memory_utils/utils.py b/colossalai/utils/memory_utils/utils.py index 27b480a88..90b7438d3 100644 --- a/colossalai/utils/memory_utils/utils.py +++ b/colossalai/utils/memory_utils/utils.py @@ -1,14 +1,14 @@ import torch from colossalai.utils import get_current_device -from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor +from colossalai.zero.sharded_param.tensorful_state import StatefulTensor from typing import Tuple, Union _GLOBAL_CUDA_MEM_FRACTION = 1.0 -def colo_tensor_mem_usage(tensor: Union[torch.Tensor, ShardedTensor]) -> Tuple[int, int]: - if isinstance(tensor, ShardedTensor): +def colo_tensor_mem_usage(tensor: Union[torch.Tensor, StatefulTensor]) -> Tuple[int, int]: + if issubclass(type(tensor), StatefulTensor): t = tensor.payload elif isinstance(tensor, torch.Tensor): t = tensor @@ -46,8 +46,8 @@ def colo_cuda_memory_capacity() -> float: return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION -def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t: Union[ShardedTensor, - torch.Tensor]) -> None: +def colo_model_data_tensor_move(src_t: Union[StatefulTensor, torch.Tensor], tgt_t: Union[StatefulTensor, + torch.Tensor]) -> None: """ A colossal API for model data tensor move. The src and target tensors could be resident on both CPU and GPU. @@ -56,46 +56,44 @@ def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t The function will record the communication volume between CPU and GPU. Args: - t_src (Union[ShardedTensor, torch.Tensor]): source tensor - tgt_t (Union[ShardedTensor, torch.Tensor]): target tensor + t_src (Union[StatefulTensor, torch.Tensor]): source tensor + tgt_t (Union[StatefulTensor, torch.Tensor]): target tensor """ - if isinstance(src_t, ShardedTensor): + if issubclass(type(src_t), StatefulTensor): src_t_payload = src_t.payload else: src_t_payload = src_t.data src_dev = src_t_payload.device - if isinstance(tgt_t, ShardedTensor): + if issubclass(type(tgt_t), StatefulTensor): tgt_t_payload = tgt_t.payload else: tgt_t_payload = tgt_t.data - tgt_dev = tgt_t_payload.device tgt_t_payload.copy_(src_t_payload) # remove payload of src_t - if isinstance(src_t, ShardedTensor): + if issubclass(type(src_t), StatefulTensor): src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)) else: src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype) -def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor], - target_device: torch.device, - use_tracer: bool = True) -> None: +def colo_model_data_tensor_move_inline(t: Union[StatefulTensor, torch.Tensor], target_device: Union[torch.device, + int]) -> None: """ move a tensor to the target_device Args: - t (Union[ShardedTensor, torch.Tensor]): the tensor be moved + t (Union[StatefulTensor, torch.Tensor]): the tensor be moved """ - - if isinstance(t, ShardedTensor): - t_payload = t.payload - elif isinstance(t, torch.Tensor): + if isinstance(t, torch.Tensor): t_payload = t + elif issubclass(type(t), StatefulTensor): + t_payload = t.payload else: raise TypeError('colo_model_data_move_to_cpu dose not accept type {type(t)}') - assert isinstance(target_device, torch.device) + if isinstance(target_device, int): + target_device = torch.cuda(f'device"{target_device}') # deal with torch.device('cpu') and torch.device('cpu:0) if t_payload.device.type == target_device.type: @@ -103,16 +101,16 @@ def colo_model_data_tensor_move_inline(t: Union[ShardedTensor, torch.Tensor], t_payload.data = t_payload.data.to(target_device) -def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None: +def colo_model_data_move_to_cpu(t: Union[StatefulTensor, torch.Tensor]) -> None: """colo_model_data_move_to_cpu move a model data tensor from gpu to cpu Args: - t (Union[ShardedTensor, torch.Tensor]): _description_ + t (Union[StatefulTensor, torch.Tensor]): _description_ """ - if isinstance(t, ShardedTensor): + if issubclass(type(t), StatefulTensor): t_payload = t.payload elif isinstance(t, torch.Tensor): t_payload = t @@ -126,17 +124,17 @@ def colo_model_data_move_to_cpu(t: Union[ShardedTensor, torch.Tensor]) -> None: t_payload.data = t_payload.data.cpu() -def colo_model_tensor_clone(t: Union[ShardedTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor: +def colo_model_tensor_clone(t: Union[StatefulTensor, torch.Tensor], target_device: torch.device) -> torch.Tensor: """ Clone a model data tensor Args: - t (Union[ShardedTensor, torch.Tensor]): a model data tensor + t (Union[StatefulTensor, torch.Tensor]): a model data tensor target_device (torch.device): the target device Returns: torch.Tensor: a cloned torch tensor """ - t_payload = t.payload if isinstance(t, ShardedTensor) else t + t_payload = t.payload if issubclass(type(t), StatefulTensor) else t ret = t_payload.to(target_device) return ret