mirror of https://github.com/hpcaitech/ColossalAI
[pipeline] test pure pipeline process using llama (#4218)
* bloom policy
* llama pipeline forward and tests
* fix the output and attention_mask
* fix name
* bind argument to policy
* Revert "bloom policy"
This reverts commit 8dee68a0a2
.
This policy should be revert and copied to feature/bloom
* revert the bloom changes
* cancel unneeded inputs
* gpt
* finish llama
* causal lm and sequence classification
* revision
* add pure pipeline test
* fixed version
* fixed version
* pure pipeline
pull/4445/head
parent
36e546b2cc
commit
d0807122e2
|
@ -9,6 +9,7 @@ import torch
|
|||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.distributed import distributed_c10d as c10d
|
||||
from version_parser.version import Version
|
||||
|
||||
from .stage_manager import PipelineStageManager
|
||||
|
||||
|
@ -61,17 +62,6 @@ def _broadcast_object_list(object_list: List[Any],
|
|||
c10d._warn_not_in_group("broadcast_object_list")
|
||||
return
|
||||
|
||||
my_rank = dist.get_rank()
|
||||
# Serialize object_list elements to tensors on src rank.
|
||||
if my_rank == src:
|
||||
if torch.__version__ >= "1.13.0":
|
||||
tensor_list, size_list = zip(*[c10d._object_to_tensor(obj, device=device) for obj in object_list])
|
||||
else:
|
||||
tensor_list, size_list = zip(*[c10d._object_to_tensor(obj) for obj in object_list])
|
||||
object_sizes_tensor = torch.cat(size_list)
|
||||
else:
|
||||
object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long)
|
||||
|
||||
is_nccl_backend = c10d._check_for_nccl_backend(group)
|
||||
current_device = None
|
||||
|
||||
|
@ -83,6 +73,18 @@ def _broadcast_object_list(object_list: List[Any],
|
|||
current_device = torch.device("cpu")
|
||||
if is_nccl_backend:
|
||||
current_device = torch.device("cuda", torch.cuda.current_device())
|
||||
|
||||
my_rank = dist.get_rank()
|
||||
# Serialize object_list elements to tensors on src rank.
|
||||
if my_rank == src:
|
||||
if Version(torch.__version__) >= Version("1.13.0"):
|
||||
tensor_list, size_list = zip(*[c10d._object_to_tensor(obj, device=current_device) for obj in object_list])
|
||||
else:
|
||||
tensor_list, size_list = zip(*[c10d._object_to_tensor(obj) for obj in object_list])
|
||||
object_sizes_tensor = torch.cat(size_list)
|
||||
else:
|
||||
object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long)
|
||||
|
||||
if is_nccl_backend:
|
||||
object_sizes_tensor = object_sizes_tensor.to(current_device)
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import copy
|
||||
import random
|
||||
from contextlib import nullcontext
|
||||
from typing import Any, Callable, Iterator, List, Optional, Tuple
|
||||
|
@ -6,7 +7,6 @@ import numpy as np
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch import Tensor
|
||||
from torch.nn import Module
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
|
@ -94,10 +94,10 @@ def execute_pipeline(
|
|||
return outputs
|
||||
|
||||
|
||||
class data_iter():
|
||||
class data_loader():
|
||||
|
||||
def __getitem__(self, x):
|
||||
return torch.randint(0, 100, (4, 128)).cuda()
|
||||
return torch.ones((4, 128), dtype=torch.int).cuda() * 10
|
||||
|
||||
|
||||
def loss(x, y):
|
||||
|
@ -127,20 +127,30 @@ def run_llama_test(enable_fused_normalization, enable_tensor_parallelism, use_la
|
|||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
if name != 'transformers_llama':
|
||||
continue
|
||||
num_microbatches = 2
|
||||
org_model = model_fn().cuda()
|
||||
data_iter = iter(data_loader())
|
||||
|
||||
model_copy = copy.deepcopy(org_model)
|
||||
batch = next(data_iter)
|
||||
with torch.no_grad():
|
||||
y = model_copy(batch)
|
||||
org_loss = loss(batch, y)
|
||||
optimizer = torch.optim.AdamW(org_model.parameters(), lr=1e-3)
|
||||
#dataloader=prepare_dataloader(dataset=dataset['train'],batch_size=4)
|
||||
schedule = OneForwardOneBackwardSchedule(num_microbatches, stage_manager)
|
||||
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
|
||||
enable_tensor_parallelism=enable_tensor_parallelism,
|
||||
pipeline_stage_manager=stage_manager)
|
||||
pipelined_model = PipelinedModel(org_model, shard_config, stage_manager)
|
||||
pp_optimizer = PipelineOptimizer(optimizer, pipelined_model)
|
||||
data_it = iter(data_iter())
|
||||
results = execute_pipeline(data_it, pipelined_model, loss, pp_optimizer, schedule=schedule)
|
||||
results = execute_pipeline(data_iter, pipelined_model, loss, pp_optimizer, schedule=schedule)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
assert results['loss'] is not None
|
||||
assert results['loss'] == org_loss
|
||||
else:
|
||||
assert results['loss'] is None
|
||||
assert results['outputs'] is None
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
Loading…
Reference in New Issue