mirror of https://github.com/hpcaitech/ColossalAI
bloom policy
parent
0192011688
commit
8dee68a0a2
|
@ -1,11 +1,26 @@
|
|||
import warnings
|
||||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.nn import CrossEntropyLoss, Module
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
||||
from transformers.models.bloom.modeling_bloom import BloomModel
|
||||
from transformers.utils import logging
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
from .._utils import getattr_, setattr_
|
||||
from ..modeling.bloom import build_bloom_alibi_tensor_fn
|
||||
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BloomPolicy(Policy):
|
||||
|
||||
|
@ -110,7 +125,40 @@ class BloomPolicy(Policy):
|
|||
|
||||
|
||||
class BloomModelPolicy(BloomPolicy):
|
||||
pass
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
module_policy = super().module_policy()
|
||||
from transformers.models.bloom.modeling_bloom import BloomModel
|
||||
if self.pipeline_stage_manager:
|
||||
module_policy[BloomModel] = ModulePolicyDescription(
|
||||
method_replacement={"forward": partial(bloom_model_forward, stage_manager=self.pipeline_stage_manager)})
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""
|
||||
get pipeline layers for current stage
|
||||
"""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
if self.stage_manager.is_first_stage():
|
||||
held_layers.append(module.word_embeddings)
|
||||
held_layers.append(module.word_embeddings_layernorm)
|
||||
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, self.stage_manager.stage)
|
||||
held_layers.extend(module.h[start_idx:end_idx])
|
||||
|
||||
if self.stage_manager.is_last_stage():
|
||||
held_layers.append(module.ln_f)
|
||||
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self, module: BloomModel) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bloommodel'''
|
||||
pass
|
||||
|
||||
|
||||
class BloomForCausalLMPolicy(BloomPolicy):
|
||||
|
@ -181,3 +229,173 @@ class BloomForTokenClassificationPolicy(BloomPolicy):
|
|||
class BloomForQuestionAnsweringPolicy(BloomPolicy):
|
||||
# No head sharding as the output features is only 2
|
||||
pass
|
||||
|
||||
|
||||
def bloom_model_forward(
|
||||
self: BloomModel,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
**deprecated_arguments,
|
||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# add warnings here
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if use_cache:
|
||||
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
||||
use_cache = False
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape batch_size x num_heads x N x N
|
||||
|
||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
# case: First stage of training
|
||||
if stage_manager.is_first_stage():
|
||||
# check input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
# initialize in the first stage and then pass to the next stage
|
||||
else:
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
# extra recording tensor should be generated in the first stage
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
# Compute alibi tensor: check build_alibi_tensor documentation,build for every stage
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
if past_key_values[0] is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2] # source_len
|
||||
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||||
|
||||
# causal_mask is constructed every stage and its input is passed through different stages
|
||||
causal_mask = self._prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
# calculate the num_layers
|
||||
num_layers_per_stage = len(self.h) // stage_manager.num_stages
|
||||
start_layer = stage_manager.stage * num_layers_per_stage
|
||||
end_layer = (stage_manager.stage + 1) * num_layers_per_stage
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h[start_layer:end_layer], past_key_values[start_layer:end_layer])):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
alibi,
|
||||
causal_mask,
|
||||
layer_past,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
alibi=alibi,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + \
|
||||
(outputs[2 if use_cache else 1],)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
# TODO: deal with all_hidden_states, all_self_attentions, presents
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
# attention_mask is not returned ; presents = past_key_values
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue