|
|
|
@ -1,6 +1,7 @@
|
|
|
|
|
import pytest
|
|
|
|
|
import torch
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
from packaging.version import Version
|
|
|
|
|
from torch.optim import Adam
|
|
|
|
|
from utils import shared_tempdir
|
|
|
|
|
|
|
|
|
@ -19,14 +20,8 @@ from colossalai.testing import (
|
|
|
|
|
)
|
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@clear_cache_before_run()
|
|
|
|
|
@parameterize("shard", [True, False])
|
|
|
|
|
@parameterize("model_name", ["transformers_gpt"])
|
|
|
|
|
@parameterize("size_per_shard", [32])
|
|
|
|
|
@parameterize(
|
|
|
|
|
"test_config",
|
|
|
|
|
[
|
|
|
|
|
if Version(torch.__version__) < Version("2.0.0"):
|
|
|
|
|
TEST_CONFIGS = [
|
|
|
|
|
{
|
|
|
|
|
"tp_size": 4,
|
|
|
|
|
"pp_size": 1,
|
|
|
|
@ -35,8 +30,19 @@ from tests.kit.model_zoo import model_zoo
|
|
|
|
|
{"tp_size": 2, "pp_size": 2, "num_microbatches": 4, "precision": "fp16", "initial_scale": 1},
|
|
|
|
|
{"tp_size": 2, "pp_size": 1, "zero_stage": 2, "precision": "fp16", "initial_scale": 1},
|
|
|
|
|
{"tp_size": 1, "pp_size": 2, "num_microbatches": 4, "zero_stage": 1, "precision": "fp16", "initial_scale": 1},
|
|
|
|
|
],
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
else:
|
|
|
|
|
TEST_CONFIGS = [
|
|
|
|
|
# TODO(ver217): other configs lead to hang
|
|
|
|
|
{"tp_size": 1, "pp_size": 2, "num_microbatches": 4, "zero_stage": 1, "precision": "fp16", "initial_scale": 1},
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@clear_cache_before_run()
|
|
|
|
|
@parameterize("shard", [True, False])
|
|
|
|
|
@parameterize("model_name", ["transformers_gpt"])
|
|
|
|
|
@parameterize("size_per_shard", [32])
|
|
|
|
|
@parameterize("test_config", TEST_CONFIGS)
|
|
|
|
|
def exam_state_dict(shard: bool, model_name: str, size_per_shard: int, test_config: dict):
|
|
|
|
|
(model_fn, data_gen_fn, output_transform_fn, loss_fn, _) = next(
|
|
|
|
|
iter(model_zoo.get_sub_registry(model_name).values())
|
|
|
|
|