[autochunk] add benchmark for transformer and alphafold (#2543)

pull/2492/head
oahzxl 2 years ago committed by GitHub
parent 9885ec2b2e
commit c4b15661d7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,131 @@
import time
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _benchmark_evoformer_stack_gm(
data_args: tuple,
max_memory: int,
get_model: Any,
get_data: Any,
) -> None:
# build model and input
model = get_model()
meta_args, concrete_args = get_data(*data_args)
if concrete_args is None:
concrete_args = []
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [MetaTensor(i[1], fake_device="cuda:0") for i in meta_args] + [i[1] for i in concrete_args]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
# bench
mem = _benchmark_memory(gm, inputs)
speed = _benchmark_speed(gm, inputs)
print("evoformer stack gm, mem: %.2fMB, time: %.4fs, data_args: %s" % (mem, speed, str(data_args)))
def _benchmark_evoformer_stack_origin(
data_args: tuple,
get_model: Any,
get_data: Any,
) -> None:
# build model and input
model = get_model()
meta_args, concrete_args = get_data(*data_args)
if concrete_args is None:
concrete_args = []
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
# bench
mem = _benchmark_memory(model, inputs)
speed = _benchmark_speed(model, inputs)
print("evoformer stack origin, mem: %.2fMB, time: %.4fs, data_args: %s" % (mem, speed, str(data_args)))
def _benchmark_memory(model, inputs):
with torch.no_grad():
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
return new_max_mem - now_mem
def _benchmark_speed(model, inputs, loop=5):
with torch.no_grad():
for _ in range(loop // 2 + 1):
model(*inputs)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(*inputs)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_evoformer_stack():
from test_autochunk_evoformer_stack import get_data, get_model
data_args = [128, 256]
print("")
_benchmark_evoformer_stack_origin(data_args, get_model, get_data)
_benchmark_evoformer_stack_gm(data_args, 600, get_model, get_data)
_benchmark_evoformer_stack_gm(data_args, 400, get_model, get_data)
_benchmark_evoformer_stack_gm(data_args, None, get_model, get_data)
if __name__ == "__main__":
# launch colossalai
colossalai.launch(
config={},
rank=0,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
benchmark_evoformer_stack()

@ -12,7 +12,7 @@ try:
except:
HAS_REPO = False
from test_alphafold_utils import run_test
from test_autochunk_alphafold_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE

@ -12,7 +12,7 @@ try:
except:
HAS_REPO = False
from test_alphafold_utils import run_test
from test_autochunk_alphafold_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE

@ -11,7 +11,7 @@ try:
HAS_REPO = True
except:
HAS_REPO = False
from test_alphafold_utils import run_test
from test_autochunk_alphafold_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE

@ -13,7 +13,7 @@ except:
MODELS = []
HAS_REPO = False
from test_diffuser_utils import run_test
from test_autochunk_diffuser_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE

@ -0,0 +1,150 @@
import time
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import parameter_size
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _benchmark_autochunk_gpt_gm(
model: Any,
data: tuple,
max_memory: int = None,
) -> None:
model = model.cuda().eval()
# build model and input
meta_args, concrete_args, sequence = data
if concrete_args is None:
concrete_args = {}
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
concrete_args={k: v for k, v in concrete_args.items()},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
meta_tensors = [MetaTensor(i, fake_device="cuda:0") if isinstance(i, torch.Tensor) else i for i in meta_tensors]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model.cuda().eval(),
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args.items()},
concrete_args={k: v for k, v in concrete_args.items()},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# init inputs
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
# bench
para_mem = float(parameter_size(model)) / 1024**2 * 6
act_mem = _benchmark_memory(gm, inputs)
speed = _benchmark_speed(gm, inputs)
print("gpt autochunk, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
(speed, act_mem, para_mem, act_mem + para_mem))
def _benchmark_autochunk_gpt_origin(
model: Any,
data: tuple,
) -> None:
# build model and input
meta_args, concrete_args, sequence = data
if concrete_args is None:
concrete_args = {}
# init inputs
inputs = [meta_args[i] if i in meta_args else concrete_args[i] for i in sequence]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda().eval()
# bench
para_mem = float(parameter_size(model)) / 1024**2 * 6
act_mem = _benchmark_memory(model, inputs)
speed = _benchmark_speed(model, inputs)
print("gpt origin, time: %.4fs, act mem: %.2fMB, para mem: %.2fMB, all mem: %.2fMB" %
(speed, act_mem, para_mem, act_mem + para_mem))
return act_mem
def _benchmark_memory(model, inputs):
with torch.no_grad():
torch.cuda.reset_peak_memory_stats()
now_mem = float(torch.cuda.memory_allocated()) / 1024**2
model(*[i.clone() if isinstance(i, torch.Tensor) else i for i in inputs])
new_max_mem = float(torch.cuda.max_memory_allocated()) / 1024**2
return new_max_mem - now_mem
def _benchmark_speed(model, inputs, loop=5):
with torch.no_grad():
for _ in range(loop // 2 + 1):
model(*inputs)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(*inputs)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_autochunk_gpt(batch=1, seq=512, n_embd=768, n_head=12):
from test_autochunk_gpt import GPT2Config, GPT2Model, get_data
model = GPT2Model
config = GPT2Config(n_embd=n_embd, n_position=seq, n_layer=2, n_head=n_head)
config.max_position_embeddings = seq
model = model(config=config)
shape = [batch, seq]
print("\nbatch: %d, seq: %d, n_embd: %d, n_head: %d" % (batch, seq, n_embd, n_head))
max_mem = _benchmark_autochunk_gpt_origin(model, get_data(shape))
for ratio in [0.5, 0.4, 0.3, 0.2]:
try:
_benchmark_autochunk_gpt_gm(model, get_data(shape), max_mem * ratio)
except RuntimeError as e:
if e.args[0] == 'Search failed. Try a larger memory threshold.':
break
except Exception as e:
raise e
_benchmark_autochunk_gpt_gm(model, get_data(shape), None)
if __name__ == "__main__":
# launch colossalai
colossalai.launch(
config={},
rank=0,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
benchmark_autochunk_gpt(batch=1, seq=1024, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=2048, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=4096, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=6144, n_embd=768, n_head=12)
benchmark_autochunk_gpt(batch=1, seq=8192, n_embd=768, n_head=12)

@ -13,7 +13,7 @@ except:
MODELS = []
HAS_REPO = False
from test_transformer_utils import run_test
from test_autochunk_transformer_utils import run_test
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
Loading…
Cancel
Save