mirror of https://github.com/hpcaitech/ColossalAI
[checkpoint] add kwargs for load_state_dict (#1374)
parent
50dec605e1
commit
b6fd165f66
|
@ -3,7 +3,7 @@ import torch.distributed as dist
|
|||
from colossalai.tensor import ColoTensor
|
||||
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||||
from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor
|
||||
from typing import Optional
|
||||
from typing import Optional, Dict
|
||||
|
||||
|
||||
def save_checkpoint(path: str,
|
||||
|
@ -71,22 +71,23 @@ def save_checkpoint(path: str,
|
|||
dist.barrier()
|
||||
|
||||
|
||||
def load_checkpoint(path,
|
||||
def load_checkpoint(path: str,
|
||||
epoch: int,
|
||||
model: torch.nn.Module,
|
||||
optimizer: Optional[ColossalaiOptimizer] = None,
|
||||
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
|
||||
*args,
|
||||
**kwargs):
|
||||
torch_load_kwargs: Optional[Dict] = None,
|
||||
load_state_dict_kwargs: Optional[Dict] = None):
|
||||
"""load_checkpoint
|
||||
load a model, whose parameters are `ColoTensor`s.
|
||||
Args:
|
||||
path (_type_): _description_
|
||||
epoch (int): _description_
|
||||
rank (int): _description_
|
||||
model (torch.nn.Module): _description_
|
||||
optimizer (ColossalaiOptimizer, optional): _description_. Defaults to None.
|
||||
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
|
||||
path (str): directory to save the checkpoint files.
|
||||
epoch (int): the number of epoch
|
||||
model (torch.nn.Module): a torch module initialized by ColoInitContext
|
||||
optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None.
|
||||
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None.
|
||||
torch_load_kwargs: (dict, optional): The kwargs of torch.load inside the function
|
||||
load_state_dict_kwargs (dict, optional): The kwargs of load_state_dict inside the function
|
||||
"""
|
||||
rank = dist.get_rank()
|
||||
mapping = dict()
|
||||
|
@ -96,8 +97,8 @@ def load_checkpoint(path,
|
|||
gather_tensor(p)
|
||||
|
||||
if rank == 0:
|
||||
load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs)
|
||||
model.load_state_dict(load_state['model'])
|
||||
load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), **torch_load_kwargs)
|
||||
model.load_state_dict(load_state['model'], **load_state_dict_kwargs)
|
||||
dist.barrier()
|
||||
|
||||
# scatter loaded parameters
|
||||
|
@ -118,8 +119,8 @@ def load_checkpoint(path,
|
|||
gather_tensor(t)
|
||||
|
||||
if rank == 0:
|
||||
colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs)
|
||||
optimizer.load_state_dict(colo_checkpoint['optim'])
|
||||
colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), **torch_load_kwargs)
|
||||
optimizer.load_state_dict(colo_checkpoint['optim'], **load_state_dict_kwargs)
|
||||
dist.barrier()
|
||||
|
||||
for k, v in optimizer.state_dict()['state'].items():
|
||||
|
|
Loading…
Reference in New Issue