diff --git a/colossalai/utils/checkpoint/module_checkpoint.py b/colossalai/utils/checkpoint/module_checkpoint.py index dc01b3b54..78dcfb681 100644 --- a/colossalai/utils/checkpoint/module_checkpoint.py +++ b/colossalai/utils/checkpoint/module_checkpoint.py @@ -3,7 +3,7 @@ import torch.distributed as dist from colossalai.tensor import ColoTensor from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor -from typing import Optional +from typing import Optional, Dict def save_checkpoint(path: str, @@ -71,22 +71,23 @@ def save_checkpoint(path: str, dist.barrier() -def load_checkpoint(path, +def load_checkpoint(path: str, epoch: int, model: torch.nn.Module, optimizer: Optional[ColossalaiOptimizer] = None, lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, - *args, - **kwargs): + torch_load_kwargs: Optional[Dict] = None, + load_state_dict_kwargs: Optional[Dict] = None): """load_checkpoint load a model, whose parameters are `ColoTensor`s. Args: - path (_type_): _description_ - epoch (int): _description_ - rank (int): _description_ - model (torch.nn.Module): _description_ - optimizer (ColossalaiOptimizer, optional): _description_. Defaults to None. - lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None. + path (str): directory to save the checkpoint files. + epoch (int): the number of epoch + model (torch.nn.Module): a torch module initialized by ColoInitContext + optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None. + lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None. + torch_load_kwargs: (dict, optional): The kwargs of torch.load inside the function + load_state_dict_kwargs (dict, optional): The kwargs of load_state_dict inside the function """ rank = dist.get_rank() mapping = dict() @@ -96,8 +97,8 @@ def load_checkpoint(path, gather_tensor(p) if rank == 0: - load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) - model.load_state_dict(load_state['model']) + load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), **torch_load_kwargs) + model.load_state_dict(load_state['model'], **load_state_dict_kwargs) dist.barrier() # scatter loaded parameters @@ -118,8 +119,8 @@ def load_checkpoint(path, gather_tensor(t) if rank == 0: - colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) - optimizer.load_state_dict(colo_checkpoint['optim']) + colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), **torch_load_kwargs) + optimizer.load_state_dict(colo_checkpoint['optim'], **load_state_dict_kwargs) dist.barrier() for k, v in optimizer.state_dict()['state'].items():