[checkpoint] add kwargs for load_state_dict (#1374)

pull/1384/head
HELSON 2 years ago committed by GitHub
parent 50dec605e1
commit b6fd165f66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -3,7 +3,7 @@ import torch.distributed as dist
from colossalai.tensor import ColoTensor from colossalai.tensor import ColoTensor
from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor
from typing import Optional from typing import Optional, Dict
def save_checkpoint(path: str, def save_checkpoint(path: str,
@ -71,22 +71,23 @@ def save_checkpoint(path: str,
dist.barrier() dist.barrier()
def load_checkpoint(path, def load_checkpoint(path: str,
epoch: int, epoch: int,
model: torch.nn.Module, model: torch.nn.Module,
optimizer: Optional[ColossalaiOptimizer] = None, optimizer: Optional[ColossalaiOptimizer] = None,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
*args, torch_load_kwargs: Optional[Dict] = None,
**kwargs): load_state_dict_kwargs: Optional[Dict] = None):
"""load_checkpoint """load_checkpoint
load a model, whose parameters are `ColoTensor`s. load a model, whose parameters are `ColoTensor`s.
Args: Args:
path (_type_): _description_ path (str): directory to save the checkpoint files.
epoch (int): _description_ epoch (int): the number of epoch
rank (int): _description_ model (torch.nn.Module): a torch module initialized by ColoInitContext
model (torch.nn.Module): _description_ optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None.
optimizer (ColossalaiOptimizer, optional): _description_. Defaults to None. lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None. torch_load_kwargs: (dict, optional): The kwargs of torch.load inside the function
load_state_dict_kwargs (dict, optional): The kwargs of load_state_dict inside the function
""" """
rank = dist.get_rank() rank = dist.get_rank()
mapping = dict() mapping = dict()
@ -96,8 +97,8 @@ def load_checkpoint(path,
gather_tensor(p) gather_tensor(p)
if rank == 0: if rank == 0:
load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs) load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), **torch_load_kwargs)
model.load_state_dict(load_state['model']) model.load_state_dict(load_state['model'], **load_state_dict_kwargs)
dist.barrier() dist.barrier()
# scatter loaded parameters # scatter loaded parameters
@ -118,8 +119,8 @@ def load_checkpoint(path,
gather_tensor(t) gather_tensor(t)
if rank == 0: if rank == 0:
colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs) colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), **torch_load_kwargs)
optimizer.load_state_dict(colo_checkpoint['optim']) optimizer.load_state_dict(colo_checkpoint['optim'], **load_state_dict_kwargs)
dist.barrier() dist.barrier()
for k, v in optimizer.state_dict()['state'].items(): for k, v in optimizer.state_dict()['state'].items():

Loading…
Cancel
Save