Browse Source

[checkpoint] add kwargs for load_state_dict (#1374)

pull/1384/head
HELSON 2 years ago committed by GitHub
parent
commit
b6fd165f66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 29
      colossalai/utils/checkpoint/module_checkpoint.py

29
colossalai/utils/checkpoint/module_checkpoint.py

@ -3,7 +3,7 @@ import torch.distributed as dist
from colossalai.tensor import ColoTensor
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor
from typing import Optional
from typing import Optional, Dict
def save_checkpoint(path: str,
@ -71,22 +71,23 @@ def save_checkpoint(path: str,
dist.barrier()
def load_checkpoint(path,
def load_checkpoint(path: str,
epoch: int,
model: torch.nn.Module,
optimizer: Optional[ColossalaiOptimizer] = None,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
*args,
**kwargs):
torch_load_kwargs: Optional[Dict] = None,
load_state_dict_kwargs: Optional[Dict] = None):
"""load_checkpoint
load a model, whose parameters are `ColoTensor`s.
Args:
path (_type_): _description_
epoch (int): _description_
rank (int): _description_
model (torch.nn.Module): _description_
optimizer (ColossalaiOptimizer, optional): _description_. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
path (str): directory to save the checkpoint files.
epoch (int): the number of epoch
model (torch.nn.Module): a torch module initialized by ColoInitContext
optimizer (ColossalaiOptimizer, optional): optimizers. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): lr schedule. Defaults to None.
torch_load_kwargs: (dict, optional): The kwargs of torch.load inside the function
load_state_dict_kwargs (dict, optional): The kwargs of load_state_dict inside the function
"""
rank = dist.get_rank()
mapping = dict()
@ -96,8 +97,8 @@ def load_checkpoint(path,
gather_tensor(p)
if rank == 0:
load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), *args, **kwargs)
model.load_state_dict(load_state['model'])
load_state = torch.load(path + '/epoch_{}_model.pth'.format(epoch), **torch_load_kwargs)
model.load_state_dict(load_state['model'], **load_state_dict_kwargs)
dist.barrier()
# scatter loaded parameters
@ -118,8 +119,8 @@ def load_checkpoint(path,
gather_tensor(t)
if rank == 0:
colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), *args, **kwargs)
optimizer.load_state_dict(colo_checkpoint['optim'])
colo_checkpoint = torch.load(path + '/epoch_{}_optim.pth'.format(epoch), **torch_load_kwargs)
optimizer.load_state_dict(colo_checkpoint['optim'], **load_state_dict_kwargs)
dist.barrier()
for k, v in optimizer.state_dict()['state'].items():

Loading…
Cancel
Save