[legacy] clean up legacy code (#4743)

* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
pull/4750/head
Hongxin Liu 1 year ago committed by GitHub
parent 32e7f99416
commit b5f9e37c70
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -89,7 +89,7 @@ jobs:
- name: Install ColossalAI
run: |
source activate pytorch
pip install -v .
CUDA_EXT=1 pip install -v .
- name: Test the Doc
run: |

@ -32,7 +32,7 @@ jobs:
- name: Install ColossalAI
run: |
pip install -v .
CUDA_EXT=1 pip install -v .
- name: Install Doc Test Requirements
run: |

@ -53,7 +53,7 @@ jobs:
uses: actions/checkout@v3
- name: Install Colossal-AI
run: |
pip install -v .
CUDA_EXT=1 pip install -v .
- name: Test the example
run: |
dir=${{ matrix.directory }}

@ -88,7 +88,7 @@ jobs:
- name: Install Colossal-AI
run: |
pip install -v .
CUDA_EXT=1 pip install -v .
- name: Test the example
run: |

@ -42,7 +42,7 @@ jobs:
- name: Install Colossal-AI
run: |
pip install -v .
CUDA_EXT=1 pip install -v .
- name: Traverse all files
run: |

@ -1,11 +1,4 @@
from .initialize import (
get_default_parser,
initialize,
launch,
launch_from_openmpi,
launch_from_slurm,
launch_from_torch,
)
from .initialize import launch, launch_from_openmpi, launch_from_slurm, launch_from_torch
try:
# .version will be created by setup.py
@ -15,3 +8,5 @@ except ModuleNotFoundError:
# and directly set PYTHONPATH to use Colossal-AI which is a bad practice
__version__ = '0.0.0'
print('please install Colossal-AI from https://www.colossalai.org/download or from source')
__all__ = ['launch', 'launch_from_openmpi', 'launch_from_slurm', 'launch_from_torch', '__version__']

@ -1,54 +0,0 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.context import Config
from .amp_type import AMP_TYPE
from .apex_amp import convert_to_apex_amp
from .naive_amp import convert_to_naive_amp
from .torch_amp import convert_to_torch_amp
__all__ = ['convert_to_amp', 'convert_to_naive_amp', 'convert_to_apex_amp', 'convert_to_torch_amp', 'AMP_TYPE']
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None):
"""A helper function to wrap training components with Torch AMP modules.
Args:
param model (:class:`torch.nn.Module`): your model object.
optimizer (:class:`torch.optim.Optimizer`): your optimizer object.
criterion (:class:`torch.nn.modules.loss._Loss`): your loss function object.
mode (:class:`colossalai.amp.AMP_TYPE`): amp mode.
amp_config (Union[:class:`colossalai.context.Config`, dict]): configuration for different amp modes.
Returns:
A tuple (model, optimizer, criterion).
Note:
``amp_config`` may vary from different mode you choose. You should check the corresponding amp mode
for more details about ``amp_config``.
For ``apex_amp``, please check
`apex_amp config <https://nvidia.github.io/apex/amp.html?highlight=apex%20amp>`_.
For ``naive_amp``, please check
`naive_amp config <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/amp/naive_amp/_fp16_optimizer.py#L42>`_.
For ``torch_amp``, please check
`torch_amp config <https://github.com/pytorch/pytorch/blob/master/torch/cuda/amp/grad_scaler.py#L97>`_.
"""
assert isinstance(mode, AMP_TYPE), \
f'expected the argument mode be AMP_TYPE, but got {type(mode)}'
if amp_config is None:
amp_config = Config()
if mode == AMP_TYPE.TORCH:
model, optimizer, criterion = convert_to_torch_amp(model, optimizer, criterion, amp_config)
elif mode == AMP_TYPE.APEX:
model, optimizer = convert_to_apex_amp(model, optimizer, amp_config)
elif mode == AMP_TYPE.NAIVE:
model, optimizer = convert_to_naive_amp(model, optimizer, amp_config)
return model, optimizer, criterion

@ -1,60 +0,0 @@
import inspect
import torch.nn as nn
from torch.optim import Optimizer
from colossalai.utils import is_no_pp_or_last_stage
from ._fp16_optimizer import FP16Optimizer
from .grad_scaler import ConstantGradScaler, DynamicGradScaler
from .naive_amp import NaiveAMPModel, NaiveAMPOptimizer
def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
"""A helper function to wrap training components with naive AMP modules. In this mode,
we forcibly cast the model weights and inputs to FP16, and cast the model outputs to FP32 to calculate loss,
which is equivalent to Apex O3.
Args:
model (:class:`torch.nn.Module`): your model object
optimizer (:class:`torch.optim.Optimizer`): your optimizer object
amp_config (:class:`colossalai.context.Config` or dict): configuration for naive mode amp.
Returns:
Tuple: A tuple (model, optimizer)
The ``amp_config`` should contain parameters below::
verbose (bool, optional): if set to `True`, will print debug info (Default: False).
clip_grad_norm (float, optional): clip gradients with this global L2 norm (Default 0).
Note that clipping is ignored if clip_grad == 0.
dynamic_grad_scale (bool): whether to use dynamic grad scaler.
"""
if isinstance(model, nn.ModuleList):
# interleaved pipeline
module_list = []
for chunk, m in enumerate(model):
output_to_fp32 = is_no_pp_or_last_stage() and chunk == len(model) - 1
module_list.append(NaiveAMPModel(m, output_to_fp32=output_to_fp32))
model = nn.ModuleList(module_list)
else:
output_to_fp32 = is_no_pp_or_last_stage()
model = NaiveAMPModel(model, output_to_fp32=output_to_fp32)
use_dynamic_grad_scaler = amp_config.pop('dynamic_grad_scale', True)
if use_dynamic_grad_scaler:
scaler_class = DynamicGradScaler
else:
scaler_class = ConstantGradScaler
sig = inspect.signature(scaler_class.__init__)
kwargs = dict()
for param in sig.parameters.values():
if param.name in amp_config:
kwargs[param.name] = amp_config.pop(param.name)
grad_scaler = scaler_class(**kwargs)
optimizer = NaiveAMPOptimizer(optimizer, grad_scaler, **amp_config)
return model, optimizer
__all__ = ['convert_to_naive_amp', 'NaiveAMPOptimizer', 'FP16Optimizer']

@ -5,8 +5,8 @@ import torch
from torch.optim import Optimizer
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
from colossalai.interface import OptimizerWrapper
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils import get_current_device
from .base_offload_module import BaseOffloadModule
@ -19,7 +19,7 @@ class OptimState(Enum):
UNSCALED = 1
class AMPOptimizer(ColossalaiOptimizer):
class AMPOptimizer(OptimizerWrapper):
"""
A wrapper for Optimizer.
Code reference: https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/optimizer/zero_optimizer.py

@ -13,7 +13,6 @@ import torch.nn as nn
from torch.optim import Optimizer
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.tensor.d_tensor import (
is_customized_distributed_tensor,
is_distributed_tensor,
@ -130,10 +129,7 @@ def unwrap_optimizer(optimizer: OptimizerWrapper):
This method should be used before saving/loading it to/from sharded checkpoints.
'''
# TODO(Baizhou): ColossalaiOptimizer will be replaced with OptimizerWrapper in the future
unwrapped_optim = optimizer.optim
if isinstance(unwrapped_optim, ColossalaiOptimizer):
unwrapped_optim = unwrapped_optim.optim
return unwrapped_optim

@ -1,28 +0,0 @@
import click
from colossalai.context import Config
from .benchmark import run_benchmark
from .utils import *
__all__ = ['benchmark']
@click.command()
@click.option("-g", "--gpus", type=int, default=None, help="Total number of devices to use.")
@click.option("-b", "--batch_size", type=int, default=8, help="Batch size of the input tensor.")
@click.option("-s", "--seq_len", type=int, default=512, help="Sequence length of the input tensor.")
@click.option("-d", "--dimension", type=int, default=1024, help="Hidden dimension of the input tensor.")
@click.option("-w", "--warmup_steps", type=int, default=10, help="The number of warmup steps.")
@click.option("-p", "--profile_steps", type=int, default=50, help="The number of profiling steps.")
@click.option("-l", "--layers", type=int, default=2)
@click.option("-m",
"--model",
type=click.Choice(['mlp'], case_sensitive=False),
default='mlp',
help="Select the model to benchmark, currently only supports MLP")
def benchmark(gpus: int, batch_size: int, seq_len: int, dimension: int, warmup_steps: int, profile_steps: int,
layers: int, model: str):
args_dict = locals()
args = Config(args_dict)
run_benchmark(args)

@ -1,105 +0,0 @@
from functools import partial
from typing import Dict, List
import click
import torch.multiprocessing as mp
import colossalai
from colossalai.cli.benchmark.utils import find_all_configs, get_batch_data, profile_model
from colossalai.context import Config
from colossalai.context.random import reset_seeds
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.testing import free_port
from colossalai.utils import MultiTimer
from .models import MLP
def run_benchmark(args: Config) -> None:
"""
Run benchmarking with torch.multiprocessing.
"""
# sanity checks
if args.gpus is None:
click.echo("Error: --num_gpus is not given")
exit()
if args.gpus <= 1:
click.echo("Warning: tensor parallel will be activated with at least 2 devices.")
click.echo("=== Benchmarking Parameters ===")
for k, v in args.items():
click.echo(f'{k}: {v}')
click.echo('')
config_list = find_all_configs(args.gpus)
avail_ports = [free_port() for _ in range(len(config_list))]
run_func = partial(run_dist_profiling,
world_size=args.gpus,
port_list=avail_ports,
config_list=config_list,
hyperparams=args)
mp.spawn(run_func, nprocs=args.gpus)
def run_dist_profiling(rank: int, world_size: int, port_list: List[int], config_list: List[Dict],
hyperparams: Config) -> None:
"""
A function executed for profiling, this function should be spawn by torch.multiprocessing.
Args:
rank (int): rank of the process
world_size (int): the number of processes
port_list (List[int]): a list of free ports for initializing distributed networks
config_list (List[Dict]): a list of configuration
hyperparams (Config): the hyperparameters given by the user
"""
# disable logging for clean output
disable_existing_loggers()
logger = get_dist_logger()
logger.set_level('WARNING')
for config, port in zip(config_list, port_list):
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
timer = MultiTimer()
# 1D parallel should be skipped if in_features or out_features is not able to be divided exactly by 1D parallel size.
if config.parallel.tensor.mode == '1d' and hyperparams.dimension % config.parallel.tensor.size != 0:
click.echo(
"1D parallel will be skipped because in_features or out_features is not able to be divided exactly by 1D parallel size."
)
continue
if hyperparams.model == 'mlp':
model = MLP(dim=hyperparams.dimension, layers=hyperparams.layers)
else:
if gpc.get_global_rank() == 0:
click.echo("Error: Invalid argument for --model")
exit()
data_func = partial(get_batch_data,
dim=hyperparams.dimension,
batch_size=hyperparams.batch_size,
seq_length=hyperparams.seq_len,
mode=config.parallel.tensor.mode)
fwd_time, bwd_time, max_allocated, max_cached = profile_model(model=model,
warmup_steps=hyperparams.warmup_steps,
profile_steps=hyperparams.profile_steps,
data_func=data_func,
timer=timer)
gpc.destroy()
reset_seeds()
if gpc.get_global_rank() == 0:
config_str = ', '.join([f'{k}: {v}' for k, v in config.parallel.tensor.items()])
click.echo(f"=== {config_str} ===")
click.echo(f"Average forward time: {fwd_time}")
click.echo(f"Average backward time: {bwd_time}")
click.echo(f"Max allocated GPU memory: {max_allocated}")
click.echo(f"Max cached GPU memory: {max_cached}\n")

@ -1,18 +0,0 @@
import torch
import colossalai.legacy.nn as col_nn
class MLP(torch.nn.Module):
def __init__(self, dim: int, layers: int):
super().__init__()
self.layers = torch.nn.ModuleList()
for _ in range(layers):
self.layers.append(col_nn.Linear(dim, dim))
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x

@ -1,159 +0,0 @@
import math
import time
from typing import Callable, Dict, List, Tuple
import torch
from colossalai.context import Config, ParallelMode
from colossalai.utils import MultiTimer
def get_time_stamp() -> int:
"""
Return the time stamp for profiling.
Returns:
time_stamp (int): the time given by time.time()
"""
torch.cuda.synchronize()
time_stamp = time.time()
return time_stamp
def get_memory_states() -> Tuple[float]:
"""
Return the memory statistics.
Returns:
max_allocated (float): the allocated CUDA memory
max_cached (float): the cached CUDA memory
"""
max_allocated = torch.cuda.max_memory_allocated() / (1024**3)
max_cached = torch.cuda.max_memory_reserved() / (1024**3)
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
return max_allocated, max_cached
def find_all_configs(device_cnt: int) -> List[Dict]:
"""
Find all possible configurations for tensor parallelism
Args:
device_cnt (int): the number of devices
Returns:
config_list (List[Dict]): a list of configurations
"""
def _is_square(num):
# 2D parallel should be implemented with at least 2 devices.
if num <= 1:
return False
return math.floor(math.sqrt(num))**2 == num
def _is_cube(num):
# 3D parallel should be implemented with at least 2 devices.
if num <= 1:
return False
return math.floor(num**(1. / 3.))**3 == num
config_list = []
# add non-parallel config
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode=None)))
config_list.append(config)
# add 1D config
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='1d')))
config_list.append(config)
# add 2D config only if device_cnt is a square
if _is_square(device_cnt):
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='2d')))
config_list.append(config)
# check for 2.5D
# iterate over depth
for depth in range(1, device_cnt):
if device_cnt % depth == 0 and _is_square(device_cnt // depth):
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='2.5d', depth=depth)))
config_list.append(config)
# check for 3D if device_cnt is a cube
if _is_cube(device_cnt):
config = dict(parallel=dict(tensor=dict(size=device_cnt, mode='3d')))
config_list.append(config)
config_list = [Config(cfg) for cfg in config_list]
return config_list
def profile_model(model: torch.nn.Module, warmup_steps: int, profile_steps: int, data_func: Callable,
timer: MultiTimer) -> Tuple[float]:
"""
Profile the forward and backward of a model
Args:
model (torch.nn.Module): a PyTorch model
warmup_steps (int): the number of steps for warmup
profile_steps (int): the number of steps for profiling
data_func (Callable): a function to generate random data
timer (colossalai.utils.Multitimer): a timer instance for time recording
Returns:
fwd_time (float): the average forward time taken by forward pass in second
bwd_time (float): the average backward time taken by forward pass in second
max_allocated (float): the maximum GPU memory allocated in GB
max_cached (float): the maximum GPU memory cached in GB
"""
def _run_step(data):
timer.start('forward')
out = model(data)
timer.stop('forward', keep_in_history=True)
timer.start('backward')
out.mean().backward()
timer.stop('backward', keep_in_history=True)
data_list = [data_func() for _ in range(warmup_steps)]
for data in data_list:
_run_step(data)
timer.reset('forward')
timer.reset('backward')
for _ in range(profile_steps):
data = data_func()
_run_step(data)
max_allocated, max_cached = get_memory_states()
fwd_time = timer.get_timer('forward').get_history_mean()
bwd_time = timer.get_timer('backward').get_history_mean()
return fwd_time, bwd_time, max_allocated, max_cached
def get_batch_data(dim: int, batch_size: int, seq_length: int, mode: ParallelMode) -> torch.Tensor:
"""
Return a random data of shape (batch_size, seq_length, dim) for profiling.
Args:
dim (int): hidden size
batch_size (int): the number of data samples
seq_length (int): the number of tokens
mode (ParallelMode): Colossal-AI ParallelMode enum
Returns:
data (torch.Tensor): random data
"""
if mode in ['2d', '2.5d']:
batch_size = batch_size // 2
dim = dim // 2
elif mode == '3d':
batch_size = batch_size // 4
dim = dim // 2
data = torch.rand(batch_size, seq_length, dim).cuda()
return data

@ -1,6 +1,5 @@
import click
from .benchmark import benchmark
from .check import check
from .launcher import run
@ -19,7 +18,6 @@ def cli():
cli.add_command(run)
cli.add_command(check)
cli.add_command(benchmark)
if __name__ == '__main__':
cli()

@ -1,6 +1,8 @@
from .config import Config, ConfigException
from .parallel_context import ParallelContext
from .parallel_mode import ParallelMode
from .moe_context import MOE_CONTEXT
from .process_group_initializer import *
from .random import *
# from .moe_context import MOE_CONTEXT
__all__ = [
'Config',
'ConfigException',
]

@ -3,13 +3,12 @@ from typing import Tuple
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.tensor import ProcessGroup
from colossalai.legacy.tensor import ProcessGroup
def _check_sanity():
from colossalai.core import global_context as gpc
from colossalai.legacy.core import global_context as gpc
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
raise NotImplementedError("Moe is not compatible with tensor or "
"pipeline parallel at present.")
@ -61,7 +60,7 @@ class MoeContext(metaclass=SingletonMeta):
self.world_size = dist.get_world_size()
from colossalai.core import global_context as gpc
from colossalai.legacy.core import global_context as gpc
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
assert self.world_size % self.max_ep_size == 0, \
"Maximum expert parallel size must be a factor of the number of GPUs"

@ -1,6 +0,0 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context.parallel_context import global_context
__all__ = ['global_context']

@ -1,9 +1,11 @@
import operator
import torch
import torch.nn as nn
import operator
from colossalai.tensor import ProcessGroup
from colossalai.tensor.distspec import ShardSpec
from colossalai.tensor.compute_spec import ComputePattern, ComputeSpec
from colossalai.legacy.tensor import ProcessGroup
from colossalai.legacy.tensor.compute_spec import ComputePattern, ComputeSpec
from colossalai.legacy.tensor.distspec import ShardSpec
ELEMENTWISE_MODULE_OP = [torch.nn.Dropout, torch.nn.ReLU]
ELEMENTWISE_FUNC_OP = [
@ -62,7 +64,7 @@ def transformer_mlp_pass(graph_module: torch.fx.GraphModule, process_group: Proc
"""
This IR pass checks for transformer MLP like structure and annotate column and row sharding to the linear layers.
"""
#TODO: Needs to handle special cases, like x = linear(x) + linear(x)
# TODO: Needs to handle special cases, like x = linear(x) + linear(x)
graph = graph_module.graph
world_size = process_group.world_size()

@ -1,58 +1,17 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import argparse
import os
import pprint
import warnings
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
from typing import Dict, Union
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
import torch.distributed as dist
from colossalai.amp import AMP_TYPE, convert_to_amp
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.context import Config, ConfigException, ParallelMode
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.core import global_context as gpc
from colossalai.legacy.builder.builder import build_gradient_handler
from colossalai.legacy.engine import Engine
from colossalai.legacy.engine.gradient_accumulation import accumulate_gradient
from colossalai.legacy.engine.schedule import (
InterleavedPipelineSchedule,
NonPipelineSchedule,
PipelineSchedule,
get_tensor_shape,
)
from colossalai.context import Config
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
from colossalai.utils import get_current_device, is_using_ddp, is_using_pp, is_using_sequence, sync_model_param
from colossalai.utils.moe import sync_moe_model_param
from colossalai.zero.legacy import ShardedOptimizerV2, convert_to_zero_v2
from colossalai.zero.legacy.gemini.ophooks import BaseOpHook
def get_default_parser():
"""Reads user command line and uses an argument parser to parse the input arguments.
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
Returns:
Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='path to the config file')
parser.add_argument('--host', type=str, help='the master address for distributed training')
parser.add_argument('--port', type=int, help='the master port for distributed training')
parser.add_argument('--world_size', type=int, help='world size for distributed training')
parser.add_argument('--rank', type=int, help='rank for the default process group')
parser.add_argument('--local_rank', type=int, help='local rank on the node')
parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication')
return parser
from colossalai.utils import set_device, set_seed
def launch(config: Union[str, Path, Config, Dict],
@ -83,40 +42,23 @@ def launch(config: Union[str, Path, Config, Dict],
Raises:
Exception: Raise exception when config type is wrong
"""
gpc.verbose = verbose
# set config
assert isinstance(config, (Config, str, Path, dict)), \
f'expected argument config to be Config, str or Path, but got {type(config)}'
if not isinstance(config, Config) and isinstance(config, dict):
config = Config(config)
if isinstance(config, (str, Path)):
config = Config.from_file(config)
gpc.load_config(config)
if rank == 0:
warnings.warn("`config` is deprecated and will be removed soon.")
# init default process group
gpc.init_global_dist(rank, world_size, backend, host, port)
# init process groups for different parallel modes from config
gpc.init_parallel_groups()
init_method = f'tcp://[{host}]:{port}'
dist.init_process_group(rank=rank, world_size=world_size, backend=backend, init_method=init_method)
# set cuda device
if torch.cuda.is_available():
# if local rank is not given, calculate automatically
gpc.set_device(local_rank)
set_device(local_rank)
# set the number of processes running on the same node
gpc.detect_num_processes_on_current_node()
gpc.set_seed(seed)
set_seed(seed)
if verbose:
logger = get_dist_logger()
logger.info(
f'Distributed environment is initialized, '
f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, '
f'tensor parallel size: {gpc.tensor_parallel_size}',
ranks=[0])
logger.info(f'Distributed environment is initialized, world size: {dist.get_world_size()}', ranks=[0])
def launch_from_slurm(config: Union[str, Path, Config, Dict],
@ -224,247 +166,3 @@ def launch_from_torch(config: Union[str, Path, Config, Dict],
backend=backend,
seed=seed,
verbose=verbose)
def initialize(model: nn.Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
train_dataloader: Optional[Iterable] = None,
test_dataloader: Optional[Iterable] = None,
lr_scheduler: Optional[_LRScheduler] = None,
ophooks: Optional[List[BaseOpHook]] = None,
verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
"""Core function to wrap the essential training components with our functionality based on the config which is
loaded into gpc.config.
Args:
model (:class:`torch.nn.Module` or Callable): Your model instance or a function to build the model.
optimizer (:class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]`):
Your optimizer instance.
criterion (:class:`torch.nn.modules.loss._Loss`, optional): Your criterion instance.
train_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for training.
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing.
lr_scheduler (:class:`torch.nn.lr_scheduler._LRScheduler`, optional): Your lr scheduler instance, optional.
verbose (bool, optional): Whether to print logs.
Returns:
Tuple (engine, train_dataloader, test_dataloader, lr_scheduler):
A tuple of ``(engine, train_dataloader, test_dataloader, lr_scheduler)``
where only ``engine`` could not be None.
"""
# get logger
logger = get_dist_logger()
gpc.verbose = verbose
# get config from gpc
config = gpc.config
# print config
if verbose:
logger.info(
f"\n========== Your Config ========\n"
f"{pprint.pformat(gpc.config)}\n"
f"================================\n",
ranks=[0])
# cudnn
cudnn_benchmark = config.get('cudnn_benchmark', False)
cudnn_deterministic = config.get('cudnn_deterministic', False)
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.deterministic = cudnn_deterministic
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# zero
use_zero = hasattr(gpc.config, 'zero')
if use_zero:
zero_cfg = gpc.config.get('zero', None)
if zero_cfg is not None:
cfg_ = zero_cfg.copy()
else:
cfg_ = {}
optimizer_config = zero_cfg.get('optimizer_config', None)
model_config = zero_cfg.get('model_config', None)
model, optimizer = convert_to_zero_v2(model,
optimizer,
model_config=model_config,
optimizer_config=optimizer_config)
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
else:
if isinstance(model, nn.Module):
# first sync model across dp ranks
model.to(get_current_device())
elif isinstance(model, Callable):
model = model().to(get_current_device())
# optimizer maybe a optimizer_cls
if isinstance(optimizer, Callable):
optimizer = optimizer(model.parameters())
logger.warning("Initializing an non ZeRO model with optimizer class")
if not use_zero:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)
elif MOE_CONTEXT.is_initialized:
sync_moe_model_param(model)
elif is_using_ddp():
sync_model_param(model, ParallelMode.DATA)
else:
logger.warning(
"The parameters of models is not automatically synchronized.\n"
"Please make sure that all parameters are the same in data parallel group.",
ranks=[0])
# check amp and zero
fp16_cfg = gpc.config.get('fp16', None)
if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero:
raise ConfigException(
"It is not allowed to set fp16 and zero configuration in your config file at the same time")
# clip grad norm
clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0)
# initialize amp
amp_mode = None
if fp16_cfg is not None and fp16_cfg.mode is not None:
cfg_ = fp16_cfg.copy()
amp_mode = cfg_.pop('mode')
if is_using_pp():
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
if amp_mode == AMP_TYPE.NAIVE:
cfg_['clip_grad_norm'] = clip_grad_norm
model, optimizer, criterion = convert_to_amp(model=model,
optimizer=optimizer,
criterion=criterion,
mode=amp_mode,
amp_config=cfg_)
# get torch ddp config
torch_ddp_cfg = gpc.config.get('torch_ddp', dict())
# gradient handler
gradient_handler_cfg = gpc.config.get('gradient_handler', None)
if gradient_handler_cfg is None:
# if gradient handler is not specified in the configuration file,
# check in the following order
# 1. if optimizer is ZERO, then use zero grad handler
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
if isinstance(optimizer, ShardedOptimizerV2):
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
if verbose:
logger.info(
"Training with zero is detected, ZeROGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_ddp() and MOE_CONTEXT.is_initialized:
gradient_handler_cfg = [dict(type='MoeGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected with moe parallel, MoeGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_sequence():
model = DDP(model,
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
device_ids=[torch.cuda.current_device()],
**torch_ddp_cfg)
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism',
ranks=[0])
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
model = DDP(model,
process_group=gpc.get_group(ParallelMode.DATA),
device_ids=[torch.cuda.current_device()],
**torch_ddp_cfg)
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0])
elif is_using_ddp():
gradient_handler_cfg = [dict(type='DataParallelGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected when using pipeline parallel, "
"DataParallelGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
# add pipeline parallel gradient handler, if pipeline shared module is detected
for param in model.parameters():
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
if gradient_handler_cfg is None:
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
else:
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
if verbose:
logger.info(
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
break
else:
if not isinstance(gradient_handler_cfg, list):
raise ConfigException(
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
)
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
# to avoid duplicated buffer synchronization
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
model.module.sync_buffer = False
# initialize schedule for engine
if is_using_pp():
tensor_shape = get_tensor_shape()
use_interleaved = hasattr(gpc.config, 'model') and hasattr(gpc.config.model, 'num_chunks')
if gpc.is_initialized(ParallelMode.PARALLEL_1D):
scatter_gather = True
else:
scatter_gather = False
if use_interleaved:
if isinstance(model, nn.Sequential):
model = nn.ModuleList([model])
schedule = InterleavedPipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
gpc.config.model.num_chunks,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = PipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = NonPipelineSchedule()
if gradient_handler_cfg is None:
gradient_handlers = None
if verbose and not isinstance(model, DDP):
logger.warning(
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
"to all-reduce the gradients after a training step.",
ranks=[0])
else:
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
# check if optimizer is ColossalaiOptimizer
if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizerV2)):
optimizer = ColossalaiOptimizer(optim=optimizer)
# gradient accumulation
grad_accum_size = gpc.config.get('gradient_accumulation', None)
if grad_accum_size is not None:
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
accumulate_size=grad_accum_size,
gradient_handlers=gradient_handlers,
lr_scheduler=lr_scheduler)
engine = Engine(model=model,
optimizer=optimizer,
criterion=criterion,
gradient_handlers=gradient_handlers,
clip_grad_norm=clip_grad_norm,
ophook_list=ophooks,
schedule=schedule)
return engine, train_dataloader, test_dataloader, lr_scheduler

@ -0,0 +1,9 @@
from .initialize import initialize, launch, launch_from_openmpi, launch_from_slurm, launch_from_torch
__all__ = [
'launch',
'launch_from_openmpi',
'launch_from_slurm',
'launch_from_torch',
'initialize',
]

@ -0,0 +1,54 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.context import Config
from .amp_type import AMP_TYPE
from .apex_amp import convert_to_apex_amp
from .naive_amp import convert_to_naive_amp
from .torch_amp import convert_to_torch_amp
__all__ = ['convert_to_amp', 'convert_to_naive_amp', 'convert_to_apex_amp', 'convert_to_torch_amp', 'AMP_TYPE']
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None):
"""A helper function to wrap training components with Torch AMP modules.
Args:
param model (:class:`torch.nn.Module`): your model object.
optimizer (:class:`torch.optim.Optimizer`): your optimizer object.
criterion (:class:`torch.nn.modules.loss._Loss`): your loss function object.
mode (:class:`colossalai.legacy.amp.AMP_TYPE`): amp mode.
amp_config (Union[:class:`colossalai.context.Config`, dict]): configuration for different amp modes.
Returns:
A tuple (model, optimizer, criterion).
Note:
``amp_config`` may vary from different mode you choose. You should check the corresponding amp mode
for more details about ``amp_config``.
For ``apex_amp``, please check
`apex_amp config <https://nvidia.github.io/apex/amp.html?highlight=apex%20amp>`_.
For ``naive_amp``, please check
`naive_amp config <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/amp/naive_amp/_fp16_optimizer.py#L42>`_.
For ``torch_amp``, please check
`torch_amp config <https://github.com/pytorch/pytorch/blob/master/torch/cuda/amp/grad_scaler.py#L97>`_.
"""
assert isinstance(mode, AMP_TYPE), \
f'expected the argument mode be AMP_TYPE, but got {type(mode)}'
if amp_config is None:
amp_config = Config()
if mode == AMP_TYPE.TORCH:
model, optimizer, criterion = convert_to_torch_amp(model, optimizer, criterion, amp_config)
elif mode == AMP_TYPE.APEX:
model, optimizer = convert_to_apex_amp(model, optimizer, amp_config)
elif mode == AMP_TYPE.NAIVE:
model, optimizer = convert_to_naive_amp(model, optimizer, amp_config)
return model, optimizer, criterion

@ -10,11 +10,11 @@ except ImportError:
from torch import Tensor
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils import clip_grad_norm_fp32
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.utils import clip_grad_norm_fp32
class ApexAMPOptimizer(ColossalaiOptimizer):
class ApexAMPOptimizer(OptimizerWrapper):
""" A wrapper class for APEX optimizer and it implements apex-specific backward and clip_grad_norm
methods
"""

@ -0,0 +1,60 @@
import inspect
import torch.nn as nn
from torch.optim import Optimizer
from colossalai.amp.naive_amp.grad_scaler import ConstantGradScaler, DynamicGradScaler
from colossalai.legacy.utils import is_no_pp_or_last_stage
from ._fp16_optimizer import FP16Optimizer
from .naive_amp import NaiveAMPModel, NaiveAMPOptimizer
def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config):
"""A helper function to wrap training components with naive AMP modules. In this mode,
we forcibly cast the model weights and inputs to FP16, and cast the model outputs to FP32 to calculate loss,
which is equivalent to Apex O3.
Args:
model (:class:`torch.nn.Module`): your model object
optimizer (:class:`torch.optim.Optimizer`): your optimizer object
amp_config (:class:`colossalai.context.Config` or dict): configuration for naive mode amp.
Returns:
Tuple: A tuple (model, optimizer)
The ``amp_config`` should contain parameters below::
verbose (bool, optional): if set to `True`, will print debug info (Default: False).
clip_grad_norm (float, optional): clip gradients with this global L2 norm (Default 0).
Note that clipping is ignored if clip_grad == 0.
dynamic_grad_scale (bool): whether to use dynamic grad scaler.
"""
if isinstance(model, nn.ModuleList):
# interleaved pipeline
module_list = []
for chunk, m in enumerate(model):
output_to_fp32 = is_no_pp_or_last_stage() and chunk == len(model) - 1
module_list.append(NaiveAMPModel(m, output_to_fp32=output_to_fp32))
model = nn.ModuleList(module_list)
else:
output_to_fp32 = is_no_pp_or_last_stage()
model = NaiveAMPModel(model, output_to_fp32=output_to_fp32)
use_dynamic_grad_scaler = amp_config.pop('dynamic_grad_scale', True)
if use_dynamic_grad_scaler:
scaler_class = DynamicGradScaler
else:
scaler_class = ConstantGradScaler
sig = inspect.signature(scaler_class.__init__)
kwargs = dict()
for param in sig.parameters.values():
if param.name in amp_config:
kwargs[param.name] = amp_config.pop(param.name)
grad_scaler = scaler_class(**kwargs)
optimizer = NaiveAMPOptimizer(optimizer, grad_scaler, **amp_config)
return model, optimizer
__all__ = ['convert_to_naive_amp', 'NaiveAMPOptimizer', 'FP16Optimizer']

@ -6,14 +6,15 @@ import torch.distributed as dist
from torch.distributed import ProcessGroup
from torch.optim import Optimizer
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.amp.naive_amp.grad_scaler import BaseGradScaler
from colossalai.kernel.op_builder import FusedOptimBuilder
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils import clip_grad_norm_fp32, copy_tensor_parallel_attributes
from colossalai.logging import get_dist_logger
from colossalai.utils import clip_grad_norm_fp32, copy_tensor_parallel_attributes, multi_tensor_applier
from colossalai.utils import multi_tensor_applier
from ._utils import has_inf_or_nan, zero_gard_by_list
from .grad_scaler import BaseGradScaler
try:
from colossalai._C import fused_optim

@ -11,14 +11,14 @@ from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.distributed import ReduceOp
from torch.optim import Optimizer
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from ._fp16_optimizer import FP16Optimizer
class NaiveAMPOptimizer(ColossalaiOptimizer):
class NaiveAMPOptimizer(OptimizerWrapper):
"""A wrapper class for optimizer to cast all parameters to fp16
Args:
@ -57,7 +57,7 @@ class NaiveAMPModel(nn.Module):
Args:
model (torch.nn.Module): torch.nn.Module to be wrapped.
output_to_fp32 (bool, optional): Whether cast output of this module into fp32. (Default: True)
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this module.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): Parallel group mode used in this module.
(Default: ``ParallelMode.DATA``)
sync_buffer (bool, optional): whether to synchronize buffer. (Default: True)

@ -13,8 +13,8 @@ import torch.distributed as dist
from packaging import version
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
class _MultiDeviceReplicator(object):

@ -7,13 +7,13 @@ from torch import Tensor
from torch.nn.modules.loss import _Loss
from torch.optim import Optimizer
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils import clip_grad_norm_fp32
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.utils import clip_grad_norm_fp32
from ._grad_scaler import GradScaler
class TorchAMPOptimizer(ColossalaiOptimizer):
class TorchAMPOptimizer(OptimizerWrapper):
"""A wrapper class which integrate Pytorch AMP with an optimizer
Args:

@ -6,8 +6,8 @@ import torch.distributed as dist
from torch import Tensor
from torch.distributed import ReduceOp
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
_all_gather_func = dist._all_gather_base \
if "all_gather_into_tensor" not in dir(dist) else dist.all_gather_into_tensor
@ -26,7 +26,7 @@ def all_gather(tensor: Tensor, dim: int, parallel_mode: ParallelMode, async_op:
Args:
tensor (:class:`torch.Tensor`): Tensor to be gathered.
dim (int): The dimension concatenating in.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): Parallel group mode used in this communication.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -65,7 +65,7 @@ def reduce_scatter(tensor: Tensor,
Args:
tensor (:class:`torch.Tensor`): Tensor to be reduce_scattered.
dim (int): The dimension concatenating in.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): Parallel group mode used in this communication.
op (torch.distributed.ReduceOp, optional): The type of reduce operation,
should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR].
More details about ReduceOp please refer to
@ -105,7 +105,7 @@ def all_reduce(tensor: Tensor,
Args:
tensor (:class:`torch.Tensor`): Tensor to be all-reduced.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): Parallel group mode used in this communication.
op (torch.distributed.ReduceOp, optional): The type of reduce operation,
should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR].
More details about ReduceOp please refer to
@ -141,7 +141,7 @@ def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, async_op: b
Args:
tensor (:class:`torch.Tensor`): Tensor to be broadcast.
src (int): Source rank.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): Parallel group mode used in this communication.
async_op (bool, optional): Whether operations are asynchronous.
Returns:
@ -173,7 +173,7 @@ def reduce(tensor: Tensor, dst: int, parallel_mode: ParallelMode, op: ReduceOp =
Args:
tensor (:class:`torch.Tensor`): Tensor to be reduced.
dst (int): Destination rank.
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): Parallel group mode used in this communication.
async_op (bool, optional): Whether operations are asynchronous.
Returns:

@ -8,8 +8,8 @@ from typing import List, Tuple, Union
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.utils import get_current_device
from .utils import gather_split_1d_tensor, split_tensor_into_1d_equal_chunks

@ -10,8 +10,8 @@ import torch.distributed as dist
from torch.distributed import ProcessGroupNCCL
from torch.distributed import distributed_c10d as c10d
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
TensorShape = Union[torch.Size, List[int], Tuple[int]]
_pg_manager = {}

@ -3,8 +3,8 @@
import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.utils import get_current_device, synchronize

@ -3,8 +3,8 @@ from typing import List, Tuple, Union
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.utils import get_current_device
TensorShape = Union[torch.Size, List[int], Tuple[int]]

@ -0,0 +1,4 @@
from .parallel_context import ParallelContext
from .parallel_mode import ParallelMode
from .process_group_initializer import *
from .random import *

@ -11,10 +11,10 @@ import numpy as np
import torch
import torch.distributed as dist
from colossalai.constants import ALLOWED_MODES, INITIALIZER_MAPPING
from colossalai.context.config import Config
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.constants import ALLOWED_MODES, INITIALIZER_MAPPING
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
from colossalai.logging import get_dist_logger
@ -110,12 +110,12 @@ class ParallelContext(metaclass=SingletonMeta):
"""Adds the global rank of the current device for `parallel_mode` to the context.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode for the rank.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode for the rank.
rank (int): The rank to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._global_ranks[parallel_mode] = rank
@ -124,11 +124,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the local rank of the current device.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
int: The local rank of the current device for `parallel_mode`.
@ -140,12 +140,12 @@ class ParallelContext(metaclass=SingletonMeta):
"""Adds the local rank of the current device for `parallel_mode` to the context.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode for the rank.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode for the rank.
rank (int): The rank to be added.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._local_ranks[parallel_mode] = rank
@ -154,11 +154,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the global rank of the next device.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
int: The global rank of the next device for `parallel_mode`.
@ -176,11 +176,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the global rank of the previous device.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
int: The global rank of the previous device for `parallel_mode`.
@ -199,11 +199,11 @@ class ParallelContext(metaclass=SingletonMeta):
among its group for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
bool: a boolean value indicating whether the current device is the first one
@ -217,11 +217,11 @@ class ParallelContext(metaclass=SingletonMeta):
among its group for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
bool: a boolean value indicating whether the current device is the first one
@ -248,11 +248,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the world size for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
int: The world size for `parallel_mode`.
@ -264,12 +264,12 @@ class ParallelContext(metaclass=SingletonMeta):
"""Adds world size for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode corresponding to the process group
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode corresponding to the process group
world_size (int): The world size to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._world_sizes[parallel_mode] = world_size
@ -278,11 +278,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the group of the current device for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
torch.distributed.ProcessGroup: The group of the current device for `parallel_mode`.
@ -294,12 +294,12 @@ class ParallelContext(metaclass=SingletonMeta):
"""Adds the group of the current device for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
group (torch.distributed.ProcessGroup): The group to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._groups[parallel_mode] = group
@ -308,9 +308,9 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the Gloo group of the current device for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:type parallel_mode: :class:`colossalai.legacy.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
of :class:`colossalai.legacy.context.ParallelMode`
:return: The group of the current device for `parallel_mode`
:rtype: torch.distributed.ProcessGroup
"""
@ -321,11 +321,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Adds the Gloo group of the current device for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:type parallel_mode: :class:`colossalai.legacy.context.ParallelMode`
:param group: The group to be added
:type group: torch.distributed.ProcessGroup
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
of :class:`colossalai.legacy.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._cpu_groups[parallel_mode] = group
@ -334,11 +334,11 @@ class ParallelContext(metaclass=SingletonMeta):
"""Returns the rank of the current device for `parallel_mode` in the group.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
Returns:
int: The rank of the current device for `parallel_mode` in the group.
@ -350,12 +350,12 @@ class ParallelContext(metaclass=SingletonMeta):
"""Adds the ranks of the current device for `parallel_mode` in the group.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
ranks (list): List of ranks to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
of :class:`colossalai.legacy.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._ranks_in_group[parallel_mode] = ranks
@ -489,7 +489,7 @@ class ParallelContext(metaclass=SingletonMeta):
in the current system.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Returns:
bool: a boolean value indicating whether `parallel_mode` is initialized in the current system.

@ -3,10 +3,10 @@ from .initializer_2d import Initializer_2D
from .initializer_2p5d import Initializer_2p5D
from .initializer_3d import Initializer_3D
from .initializer_data import Initializer_Data
from .initializer_model import Initializer_Model
from .initializer_pipeline import Initializer_Pipeline
from .initializer_sequence import Initializer_Sequence
from .initializer_tensor import Initializer_Tensor
from .initializer_model import Initializer_Model
from .process_group_initializer import ProcessGroupInitializer
__all__ = [

@ -3,7 +3,7 @@
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode

@ -2,7 +2,7 @@ import math
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode

@ -6,7 +6,7 @@ import math
import torch.distributed as dist
from colossalai.context import Config
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode

@ -5,7 +5,7 @@ import math
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode

@ -7,8 +7,8 @@ from contextlib import contextmanager
import torch.cuda
from torch import Tensor
from .seed_manager import SeedManager
from ..parallel_mode import ParallelMode
from .seed_manager import SeedManager
_SEED_MANAGER = SeedManager()
@ -53,11 +53,11 @@ def add_seed(parallel_mode: ParallelMode, seed: int, overwrite: bool = False):
"""Adds a seed to the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
seed (int): The seed to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of
:class:`colossalai.context.ParallelMode` or the seed for `parallel_mode` has been added.
:class:`colossalai.legacy.context.ParallelMode` or the seed for `parallel_mode` has been added.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -70,7 +70,7 @@ def set_mode(parallel_mode: ParallelMode):
"""Sets the current mode of the seed manager.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -83,7 +83,7 @@ def set_seed_states(parallel_mode: ParallelMode, state: Tensor):
"""Sets the state of the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
state (:class:`torch.Tensor`): the state to be set.
Raises:
@ -161,7 +161,7 @@ def with_seed(func, parallel_mode: ParallelMode):
def moe_set_seed(seed):
if torch.cuda.is_available():
from colossalai.core import global_context as gpc
from colossalai.legacy.core import global_context as gpc
global_rank = gpc.get_global_rank()
diff_seed = seed + global_rank
add_seed(ParallelMode.TENSOR, diff_seed, True)

@ -4,7 +4,7 @@
import torch
from torch import Tensor
from colossalai.context.parallel_mode import ParallelMode
from colossalai.legacy.context.parallel_mode import ParallelMode
class SeedManager:
@ -36,7 +36,7 @@ class SeedManager:
"""Sets the state of the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
state (:class:`torch.Tensor`): the state to be set.
Raises:
@ -49,7 +49,7 @@ class SeedManager:
"""Sets the current mode of the seed manager.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
"""
if self.current_mode:
# save the current state for current mode
@ -63,12 +63,12 @@ class SeedManager:
"""Adds a seed to the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
seed (int): The seed to be added.
overwrite (bool, optional): Whether allows to overwrite the seed that has been set already
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.context.ParallelMode`
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.legacy.context.ParallelMode`
or the seed for `parallel_mode` has been added.
"""
assert isinstance(parallel_mode, ParallelMode), 'A valid ParallelMode must be provided'

@ -0,0 +1,6 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.legacy.context.parallel_context import global_context
__all__ = ['global_context']

@ -8,6 +8,7 @@ from torch import Tensor
from torch.nn import Module
from torch.nn.modules.loss import _Loss
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.engine.gradient_handler import BaseGradientHandler
from colossalai.legacy.engine.schedule import (
BaseSchedule,
@ -15,9 +16,8 @@ from colossalai.legacy.engine.schedule import (
NonPipelineSchedule,
PipelineSchedule,
)
from colossalai.legacy.zero.gemini import BaseOpHook, register_ophooks_recursively
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.zero.legacy.gemini import BaseOpHook, register_ophooks_recursively
class Engine:
@ -27,7 +27,7 @@ class Engine:
Args:
model (``torch.nn.Module``): The neural network model.
optimizer (``colossalai.nn.optimizer.ColossalaiOptimizer``): Optimizer for updating the parameters.
optimizer (``colossalai.interface.OptimizerWrapper``): Optimizer for updating the parameters.
criterion (``torch.nn.modules.loss._Loss``, optional): Loss function for calculating loss.
gradient_handlers (List[``BaseGradientHandler``], optional): A list of gradient handler used in backward.
clip_grad_norm (float, optional): The norm of gradient clipping.
@ -61,7 +61,7 @@ class Engine:
def __init__(self,
model: Module,
optimizer: "ColossalaiOptimizer",
optimizer: "OptimizerWrapper",
criterion: Optional[_Loss] = None,
gradient_handlers: Optional[List[BaseGradientHandler]] = None,
clip_grad_norm: float = 0.0,
@ -157,7 +157,7 @@ class Engine:
"""Execute parameter update
"""
self._all_reduce_gradients()
self.optimizer.clip_grad_norm(self.model, self._clip_grad_norm)
self.optimizer.clip_grad_by_norm(self._clip_grad_norm)
return self.optimizer.step()
def backward(self, loss: Tensor):

@ -10,12 +10,12 @@ from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.engine import BaseGradientHandler
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils import conditional_context
class GradAccumOptimizer(ColossalaiOptimizer):
class GradAccumOptimizer(OptimizerWrapper):
"""A wrapper for the optimizer to enable gradient accumulation by skipping the steps
before accumulation size is reached.
@ -74,7 +74,7 @@ class GradAccumOptimizer(ColossalaiOptimizer):
if self.accumulate_step < self.accumulate_size:
pass
else:
self.optim.clip_grad_norm(model, max_norm)
self.optim.clip_grad_by_norm(max_norm)
def backward(self, loss: Tensor) -> None:
"""Execute backward pass.

@ -1,5 +1,5 @@
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler

@ -1,6 +1,6 @@
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.registry import GRADIENT_HANDLER
from colossalai.utils.moe import get_moe_epsize_param_dict

@ -6,7 +6,7 @@ import torch
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler

@ -1,5 +1,5 @@
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler

@ -7,11 +7,11 @@ from typing import Callable, List, Tuple, Union
import torch.cuda
import colossalai.legacy.communication as comm
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.amp.naive_amp import NaiveAMPModel
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils import switch_virtual_pipeline_parallel_rank
from colossalai.logging import get_dist_logger
from colossalai.utils import switch_virtual_pipeline_parallel_rank
from colossalai.utils.cuda import get_current_device
from ._base_schedule import BaseSchedule
@ -157,7 +157,7 @@ class PipelineSchedule(BaseSchedule):
return self._move_to_device(micro_batch_data)
def pre_processing(self, engine):
from colossalai.zero.legacy import ShardedModelV2
from colossalai.legacy.zero import ShardedModelV2
# TODO: remove this after testing new zero with pipeline parallelism
model = engine.model

@ -6,8 +6,8 @@ from typing import Iterable, Tuple
import torch.cuda
import colossalai.legacy.communication.p2p_v2 as comm
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.engine import Engine
from colossalai.utils.cuda import get_current_device

@ -0,0 +1,472 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import argparse
import os
import pprint
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from colossalai.context import Config, ConfigException
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.interface import OptimizerWrapper
from colossalai.legacy.amp import AMP_TYPE, convert_to_amp
from colossalai.legacy.amp.naive_amp import NaiveAMPModel
from colossalai.legacy.builder.builder import build_gradient_handler
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.engine import Engine
from colossalai.legacy.engine.gradient_accumulation import accumulate_gradient
from colossalai.legacy.engine.schedule import (
InterleavedPipelineSchedule,
NonPipelineSchedule,
PipelineSchedule,
get_tensor_shape,
)
from colossalai.legacy.utils import is_using_ddp, is_using_pp, is_using_sequence, sync_model_param
from colossalai.legacy.zero import ShardedOptimizerV2, convert_to_zero_v2
from colossalai.legacy.zero.gemini.ophooks import BaseOpHook
from colossalai.logging import get_dist_logger
from colossalai.utils import get_current_device
from colossalai.utils.moe import sync_moe_model_param
def get_default_parser():
"""Reads user command line and uses an argument parser to parse the input arguments.
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
Returns:
Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='path to the config file')
parser.add_argument('--host', type=str, help='the master address for distributed training')
parser.add_argument('--port', type=int, help='the master port for distributed training')
parser.add_argument('--world_size', type=int, help='world size for distributed training')
parser.add_argument('--rank', type=int, help='rank for the default process group')
parser.add_argument('--local_rank', type=int, help='local rank on the node')
parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication')
return parser
def launch(config: Union[str, Path, Config, Dict],
rank: int,
world_size: int,
host: str,
port: int,
backend: str = 'nccl',
local_rank: int = None,
seed: int = 1024,
verbose: bool = True):
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
rank (int): Rank for the default process group
world_size (int): World size of the default process group
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
local_rank (int, optional):
Rank for the process on the node and is used to set the default CUDA device,
defaults to None. If local_rank = None, the default device ordinal will be calculated automatically.
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
Raises:
Exception: Raise exception when config type is wrong
"""
gpc.verbose = verbose
# set config
assert isinstance(config, (Config, str, Path, dict)), \
f'expected argument config to be Config, str or Path, but got {type(config)}'
if not isinstance(config, Config) and isinstance(config, dict):
config = Config(config)
if isinstance(config, (str, Path)):
config = Config.from_file(config)
gpc.load_config(config)
# init default process group
gpc.init_global_dist(rank, world_size, backend, host, port)
# init process groups for different parallel modes from config
gpc.init_parallel_groups()
# set cuda device
if torch.cuda.is_available():
# if local rank is not given, calculate automatically
gpc.set_device(local_rank)
# set the number of processes running on the same node
gpc.detect_num_processes_on_current_node()
gpc.set_seed(seed)
if verbose:
logger = get_dist_logger()
logger.info(
f'Distributed environment is initialized, '
f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, '
f'tensor parallel size: {gpc.tensor_parallel_size}',
ranks=[0])
def launch_from_slurm(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables
set by SLURM
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
try:
rank = int(os.environ['SLURM_PROCID'])
world_size = int(os.environ['SLURM_NPROCS'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the SLURM environment, visit https://www.colossalai.org/ for more information on launching with SLURM"
)
launch(config=config,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_openmpi(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables
set by OpenMPI
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
try:
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the OpenMPI environment, visit https://www.colossalai.org/ for more information on launching with OpenMPI"
)
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_torch(config: Union[str, Path, Config, Dict],
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size
from the environment variables set by PyTorch
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
try:
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
host = os.environ['MASTER_ADDR']
port = int(os.environ['MASTER_PORT'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch"
)
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def initialize(model: nn.Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
train_dataloader: Optional[Iterable] = None,
test_dataloader: Optional[Iterable] = None,
lr_scheduler: Optional[_LRScheduler] = None,
ophooks: Optional[List[BaseOpHook]] = None,
verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
"""Core function to wrap the essential training components with our functionality based on the config which is
loaded into gpc.config.
Args:
model (:class:`torch.nn.Module` or Callable): Your model instance or a function to build the model.
optimizer (:class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]`):
Your optimizer instance.
criterion (:class:`torch.nn.modules.loss._Loss`, optional): Your criterion instance.
train_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for training.
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing.
lr_scheduler (:class:`torch.nn.lr_scheduler._LRScheduler`, optional): Your lr scheduler instance, optional.
verbose (bool, optional): Whether to print logs.
Returns:
Tuple (engine, train_dataloader, test_dataloader, lr_scheduler):
A tuple of ``(engine, train_dataloader, test_dataloader, lr_scheduler)``
where only ``engine`` could not be None.
"""
# get logger
logger = get_dist_logger()
gpc.verbose = verbose
# get config from gpc
config = gpc.config
# print config
if verbose:
logger.info(
f"\n========== Your Config ========\n"
f"{pprint.pformat(gpc.config)}\n"
f"================================\n",
ranks=[0])
# cudnn
cudnn_benchmark = config.get('cudnn_benchmark', False)
cudnn_deterministic = config.get('cudnn_deterministic', False)
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.deterministic = cudnn_deterministic
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# zero
use_zero = hasattr(gpc.config, 'zero')
if use_zero:
zero_cfg = gpc.config.get('zero', None)
if zero_cfg is not None:
cfg_ = zero_cfg.copy()
else:
cfg_ = {}
optimizer_config = zero_cfg.get('optimizer_config', None)
model_config = zero_cfg.get('model_config', None)
model, optimizer = convert_to_zero_v2(model,
optimizer,
model_config=model_config,
optimizer_config=optimizer_config)
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
else:
if isinstance(model, nn.Module):
# first sync model across dp ranks
model.to(get_current_device())
elif isinstance(model, Callable):
model = model().to(get_current_device())
# optimizer maybe a optimizer_cls
if isinstance(optimizer, Callable):
optimizer = optimizer(model.parameters())
logger.warning("Initializing an non ZeRO model with optimizer class")
if not use_zero:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)
elif MOE_CONTEXT.is_initialized:
sync_moe_model_param(model)
elif is_using_ddp():
sync_model_param(model, ParallelMode.DATA)
else:
logger.warning(
"The parameters of models is not automatically synchronized.\n"
"Please make sure that all parameters are the same in data parallel group.",
ranks=[0])
# check amp and zero
fp16_cfg = gpc.config.get('fp16', None)
if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero:
raise ConfigException(
"It is not allowed to set fp16 and zero configuration in your config file at the same time")
# clip grad norm
clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0)
# initialize amp
amp_mode = None
if fp16_cfg is not None and fp16_cfg.mode is not None:
cfg_ = fp16_cfg.copy()
amp_mode = cfg_.pop('mode')
if is_using_pp():
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
if amp_mode == AMP_TYPE.NAIVE:
cfg_['clip_grad_norm'] = clip_grad_norm
model, optimizer, criterion = convert_to_amp(model=model,
optimizer=optimizer,
criterion=criterion,
mode=amp_mode,
amp_config=cfg_)
# get torch ddp config
torch_ddp_cfg = gpc.config.get('torch_ddp', dict())
# gradient handler
gradient_handler_cfg = gpc.config.get('gradient_handler', None)
if gradient_handler_cfg is None:
# if gradient handler is not specified in the configuration file,
# check in the following order
# 1. if optimizer is ZERO, then use zero grad handler
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
if isinstance(optimizer, ShardedOptimizerV2):
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
if verbose:
logger.info(
"Training with zero is detected, ZeROGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_ddp() and MOE_CONTEXT.is_initialized:
gradient_handler_cfg = [dict(type='MoeGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected with moe parallel, MoeGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_sequence():
model = DDP(model,
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
device_ids=[torch.cuda.current_device()],
**torch_ddp_cfg)
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism',
ranks=[0])
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
model = DDP(model,
process_group=gpc.get_group(ParallelMode.DATA),
device_ids=[torch.cuda.current_device()],
**torch_ddp_cfg)
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0])
elif is_using_ddp():
gradient_handler_cfg = [dict(type='DataParallelGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected when using pipeline parallel, "
"DataParallelGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
# add pipeline parallel gradient handler, if pipeline shared module is detected
for param in model.parameters():
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
if gradient_handler_cfg is None:
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
else:
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
if verbose:
logger.info(
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
break
else:
if not isinstance(gradient_handler_cfg, list):
raise ConfigException(
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
)
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
# to avoid duplicated buffer synchronization
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
model.module.sync_buffer = False
# initialize schedule for engine
if is_using_pp():
tensor_shape = get_tensor_shape()
use_interleaved = hasattr(gpc.config, 'model') and hasattr(gpc.config.model, 'num_chunks')
if gpc.is_initialized(ParallelMode.PARALLEL_1D):
scatter_gather = True
else:
scatter_gather = False
if use_interleaved:
if isinstance(model, nn.Sequential):
model = nn.ModuleList([model])
schedule = InterleavedPipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
gpc.config.model.num_chunks,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = PipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = NonPipelineSchedule()
if gradient_handler_cfg is None:
gradient_handlers = None
if verbose and not isinstance(model, DDP):
logger.warning(
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
"to all-reduce the gradients after a training step.",
ranks=[0])
else:
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
# check if optimizer is OptimizerWrapper
if not isinstance(optimizer, (OptimizerWrapper, ShardedOptimizerV2)):
optimizer = OptimizerWrapper(optim=optimizer)
# gradient accumulation
grad_accum_size = gpc.config.get('gradient_accumulation', None)
if grad_accum_size is not None:
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
accumulate_size=grad_accum_size,
gradient_handlers=gradient_handlers,
lr_scheduler=lr_scheduler)
engine = Engine(model=model,
optimizer=optimizer,
criterion=criterion,
gradient_handlers=gradient_handlers,
clip_grad_norm=clip_grad_norm,
ophook_list=ophooks,
schedule=schedule)
return engine, train_dataloader, test_dataloader, lr_scheduler

@ -1,4 +1,3 @@
from ._ops import *
from .layer import *
from .loss import *
from .metric import *

@ -1,9 +1 @@
from .addmm import colo_addmm
from .batch_norm import colo_batch_norm
from .element_wise import *
from .embedding import colo_embedding
from .embedding_bag import colo_embedding_bag
from .layernorm import colo_layernorm
from .linear import colo_linear
from .loss import colo_cross_entropy
from .view import colo_view
from ._utils import *

@ -3,9 +3,10 @@ from typing import List, Optional, Union
import torch
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.nn.layer.utils import divide
from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup
from colossalai.legacy.tensor import ColoTensorSpec, ProcessGroup
from colossalai.tensor import ColoTensor
GeneralTensor = Union[ColoTensor, torch.Tensor]
Number = Union[int, float]

@ -1,90 +0,0 @@
import torch
from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ReplicaSpec, ShardSpec, distspec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, Number, convert_to_colo_tensor, reduce_grad, reduce_input
def colo_addmm_1Drow(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number,
alpha: Number) -> ColoTensor:
# mat1:S[1] x mat2:S[0] = Output:P
# beta * input + alpha * All-Reduce(Output) = res
mat1 = mat1.redistribute(ShardSpec([-1], [mat2.get_tp_world_size()]), mat2.get_process_group())
# Output:P
partial_output = torch.mm(mat1, mat2)
# Reduce(Output)
output = reduce_input(partial_output, mat2.get_process_group())
# input
assert not input_tensor.has_compute_spec(), 'Invalid input spec for 1Drow addmm op'
output = beta * input_tensor + alpha * output
output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(input_tensor.get_process_group()))
return output
def colo_addmm_1Dcol(input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number,
alpha: Number) -> ColoTensor:
# mat1:B x mat2:S[1] + input:S[1] = Output:S[1]
compute_spec = mat2.compute_spec
mat1 = mat1.redistribute(ReplicaSpec())
mat1 = reduce_grad(mat1, mat1.get_process_group())
output_parallel = torch.addmm(input_tensor, mat1, mat2, beta=beta, alpha=alpha)
output_spec = ColoTensorSpec(input_tensor.get_process_group(), ShardSpec([-1], [mat2.get_tp_world_size()]),
ComputeSpec(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
if compute_spec.output_replicate:
return output.to_replicate()
else:
return output
def colo_addmm_1d(mode: str, input_tensor: ColoTensor, mat1: ColoTensor, mat2: ColoTensor, beta: Number,
alpha: Number) -> ColoTensor:
assert mode in ('row', 'col')
funcs = {'row': colo_addmm_1Drow, 'col': colo_addmm_1Dcol}
return funcs[mode](input_tensor, mat1, mat2, beta, alpha)
@colo_op_impl(torch.addmm)
def colo_addmm(input_tensor: GeneralTensor,
mat1: ColoTensor,
mat2: ColoTensor,
beta: Number = 1,
alpha: Number = 1,
**kargs) -> ColoTensor:
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
This method computes a linear.
"""
# At least one of the tensor should be ColoTensor
assert isinstance(mat2, ColoTensor)
input_tensor = convert_to_colo_tensor(input_tensor, mat2.get_process_group())
mat1 = convert_to_colo_tensor(mat1, mat2.get_process_group())
# Add communication logic before and after linear call.
ret_tensor = None
if not mat2.has_compute_spec(): # No Model Parallel Applied
assert mat2.is_replicate(), 'Invalid mat2 spec for native addmm op'
assert input_tensor.is_replicate(), 'Invalid input spec for native addmm op'
ret_tensor = ColoTensor.from_torch_tensor(tensor=torch.addmm(input_tensor,
mat1,
mat2,
beta=beta,
alpha=alpha,
**kargs),
spec=ColoTensorSpec(mat2.get_process_group()))
elif mat2.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if mat2.is_shard_1drow() and input_tensor.is_replicate():
mode = 'row'
elif mat2.is_shard_1dcol() and (input_tensor.is_shard_1dcol() or input_tensor.is_shard_1drow()):
mode = 'col'
else:
raise NotImplementedError
ret_tensor = colo_addmm_1d(mode, input_tensor, mat1, mat2, beta, alpha)
else:
raise NotImplementedError
return ret_tensor

@ -1,33 +0,0 @@
from typing import Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
@colo_op_impl(F.batch_norm)
def colo_batch_norm(
input: GeneralTensor,
running_mean: Optional[GeneralTensor],
running_var: Optional[GeneralTensor],
weight: Optional[GeneralTensor] = None,
bias: Optional[GeneralTensor] = None,
training: bool = False,
momentum: float = 0.1,
eps: float = 1e-5,
):
assert isinstance(weight, ColoTensor)
running_mean = running_mean.detach()
running_var = running_var.detach()
input = convert_to_colo_tensor(input, weight.get_process_group())
bias = convert_to_colo_tensor(bias, weight.get_process_group())
input = input.redistribute(ReplicaSpec())
bias = bias.redistribute(ReplicaSpec())
output = F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
output = ColoTensor.from_torch_tensor(tensor=output, spec=ColoTensorSpec(pg=weight.get_process_group()))
return output

@ -1,250 +0,0 @@
import torch
import torch.nn.functional as F
from torch import Tensor
from colossalai.tensor import ColoTensor, ColoTensorSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
def register_elementwise_op(op):
@colo_op_impl(op)
def elementwise_op(input_tensor: GeneralTensor, *args, **kwargs):
"""
Handles ``__torch_function__`` dispatch for the elementwise op such
as ``torch.nn.functional.gelu`` or ``torch.nn.functional.relu``.
This method computes on either a normal tensor or a sharded tensor.
"""
if 'inplace' in kwargs:
# TODO(jiaruifang) inplace will cause bugs
input_tensor = input_tensor.clone()
return op(input_tensor, *args, **kwargs)
else:
output = op(input_tensor, *args, **kwargs)
# return output
if isinstance(input_tensor, ColoTensor):
if isinstance(output, str):
return output
if not isinstance(output, torch.Tensor):
raise NotImplementedError
return ColoTensor.from_torch_tensor(output,
spec=ColoTensorSpec(input_tensor.get_process_group(),
dist_attr=input_tensor.dist_spec))
# @colo_op_impl(torch.relu_)
# def elementwise_op(input_tensor):
# torch.relu_(input_tensor.data)
# return input_tensor
# @colo_op_impl(Tensor.add_)
# def elementwise_op(input_tensor: ColoTensor, *args, **kwargs):
# input_tensor = input_tensor.data.add_(*args, **kwargs)
# return input_tensor
# Tensor op
register_elementwise_op(Tensor.abs)
register_elementwise_op(Tensor.absolute)
register_elementwise_op(Tensor.acos)
register_elementwise_op(Tensor.arccos)
register_elementwise_op(Tensor.angle)
register_elementwise_op(Tensor.asin)
register_elementwise_op(Tensor.arcsin)
register_elementwise_op(Tensor.atan)
register_elementwise_op(Tensor.arctan)
register_elementwise_op(Tensor.all)
register_elementwise_op(Tensor.any)
register_elementwise_op(Tensor.bernoulli)
register_elementwise_op(Tensor.bfloat16)
register_elementwise_op(Tensor.bitwise_not)
register_elementwise_op(Tensor.bool)
register_elementwise_op(Tensor.byte)
register_elementwise_op(Tensor.ceil)
register_elementwise_op(Tensor.char)
register_elementwise_op(Tensor.clamp)
register_elementwise_op(Tensor.clamp_max)
register_elementwise_op(Tensor.clamp_min)
register_elementwise_op(Tensor.clip)
register_elementwise_op(Tensor.clone)
register_elementwise_op(Tensor.contiguous)
register_elementwise_op(Tensor.copysign)
register_elementwise_op(Tensor.cos)
register_elementwise_op(Tensor.cosh)
register_elementwise_op(Tensor.acosh)
register_elementwise_op(Tensor.arccosh)
register_elementwise_op(Tensor.cpu)
register_elementwise_op(Tensor.cuda)
register_elementwise_op(Tensor.deg2rad)
register_elementwise_op(Tensor.detach)
register_elementwise_op(Tensor.digamma)
register_elementwise_op(Tensor.double)
register_elementwise_op(Tensor.erf)
register_elementwise_op(Tensor.erfc)
register_elementwise_op(Tensor.erfinv)
register_elementwise_op(Tensor.exp)
register_elementwise_op(Tensor.expm1)
register_elementwise_op(Tensor.fix)
register_elementwise_op(Tensor.trunc)
register_elementwise_op(Tensor.float)
register_elementwise_op(Tensor.float_power)
register_elementwise_op(Tensor.floor)
register_elementwise_op(Tensor.frac)
register_elementwise_op(Tensor.half)
register_elementwise_op(Tensor.hardshrink)
register_elementwise_op(Tensor.heaviside)
register_elementwise_op(Tensor.i0)
register_elementwise_op(Tensor.int)
register_elementwise_op(Tensor.isfinite)
register_elementwise_op(Tensor.isinf)
register_elementwise_op(Tensor.isposinf)
register_elementwise_op(Tensor.isneginf)
register_elementwise_op(Tensor.isnan)
register_elementwise_op(Tensor.lgamma)
register_elementwise_op(Tensor.log)
register_elementwise_op(Tensor.log10)
register_elementwise_op(Tensor.log1p)
register_elementwise_op(Tensor.log2)
register_elementwise_op(Tensor.logical_not)
register_elementwise_op(Tensor.logit)
register_elementwise_op(Tensor.long)
register_elementwise_op(Tensor.nan_to_num)
register_elementwise_op(Tensor.neg)
register_elementwise_op(Tensor.negative)
register_elementwise_op(Tensor.positive)
register_elementwise_op(Tensor.pow)
register_elementwise_op(Tensor.rad2deg)
register_elementwise_op(Tensor.reciprocal)
register_elementwise_op(Tensor.round)
register_elementwise_op(Tensor.rsqrt)
register_elementwise_op(Tensor.short)
register_elementwise_op(Tensor.sigmoid)
register_elementwise_op(Tensor.sign)
register_elementwise_op(Tensor.signbit)
register_elementwise_op(Tensor.sgn)
register_elementwise_op(Tensor.sin)
register_elementwise_op(Tensor.sinc)
register_elementwise_op(Tensor.sinh)
register_elementwise_op(Tensor.asinh)
register_elementwise_op(Tensor.arcsinh)
register_elementwise_op(Tensor.sqrt)
register_elementwise_op(Tensor.square)
register_elementwise_op(Tensor.to)
register_elementwise_op(Tensor.tan)
register_elementwise_op(Tensor.tanh)
register_elementwise_op(Tensor.atanh)
register_elementwise_op(Tensor.arctanh)
register_elementwise_op(Tensor.type)
register_elementwise_op(Tensor.type_as)
# torch OP
register_elementwise_op(torch.abs)
register_elementwise_op(torch.absolute)
register_elementwise_op(torch.acos)
register_elementwise_op(torch.arccos)
register_elementwise_op(torch.angle)
register_elementwise_op(torch.asin)
register_elementwise_op(torch.arcsin)
register_elementwise_op(torch.atan)
register_elementwise_op(torch.arctan)
register_elementwise_op(torch.all)
register_elementwise_op(torch.any)
register_elementwise_op(torch.bernoulli)
register_elementwise_op(torch.bitwise_not)
register_elementwise_op(torch.ceil)
register_elementwise_op(torch.clamp)
register_elementwise_op(torch.clamp_max)
register_elementwise_op(torch.clamp_min)
register_elementwise_op(torch.clip)
register_elementwise_op(torch.clone)
register_elementwise_op(torch.copysign)
register_elementwise_op(torch.cos)
register_elementwise_op(torch.cosh)
register_elementwise_op(torch.acosh)
register_elementwise_op(torch.arccosh)
register_elementwise_op(torch.deg2rad)
register_elementwise_op(torch.digamma)
register_elementwise_op(torch.erf)
register_elementwise_op(torch.erfc)
register_elementwise_op(torch.erfinv)
register_elementwise_op(torch.exp)
register_elementwise_op(torch.expm1)
register_elementwise_op(torch.fix)
register_elementwise_op(torch.trunc)
register_elementwise_op(torch.float_power)
register_elementwise_op(torch.floor)
register_elementwise_op(torch.frac)
register_elementwise_op(torch.hardshrink)
register_elementwise_op(torch.heaviside)
register_elementwise_op(torch.i0)
register_elementwise_op(torch.isfinite)
register_elementwise_op(torch.isinf)
register_elementwise_op(torch.isposinf)
register_elementwise_op(torch.isneginf)
register_elementwise_op(torch.isnan)
register_elementwise_op(torch.lgamma)
register_elementwise_op(torch.log)
register_elementwise_op(torch.log10)
register_elementwise_op(torch.log1p)
register_elementwise_op(torch.log2)
register_elementwise_op(torch.logical_not)
register_elementwise_op(torch.logit)
register_elementwise_op(torch.nan_to_num)
register_elementwise_op(torch.neg)
register_elementwise_op(torch.negative)
register_elementwise_op(torch.positive)
register_elementwise_op(torch.pow)
register_elementwise_op(torch.rad2deg)
register_elementwise_op(torch.reciprocal)
register_elementwise_op(torch.round)
register_elementwise_op(torch.rsqrt)
register_elementwise_op(torch.sigmoid)
register_elementwise_op(torch.sign)
register_elementwise_op(torch.signbit)
register_elementwise_op(torch.sgn)
register_elementwise_op(torch.sin)
register_elementwise_op(torch.sinc)
register_elementwise_op(torch.sinh)
register_elementwise_op(torch.asinh)
register_elementwise_op(torch.arcsinh)
register_elementwise_op(torch.sqrt)
register_elementwise_op(torch.square)
register_elementwise_op(torch.tan)
register_elementwise_op(torch.tanh)
register_elementwise_op(torch.atanh)
register_elementwise_op(torch.arctanh)
register_elementwise_op(torch.zeros_like)
# nn.functional OP
register_elementwise_op(F.threshold)
register_elementwise_op(F.relu)
register_elementwise_op(F.hardtanh)
register_elementwise_op(F.hardswish)
register_elementwise_op(F.relu6)
register_elementwise_op(F.elu)
register_elementwise_op(F.selu)
register_elementwise_op(F.celu)
register_elementwise_op(F.leaky_relu)
register_elementwise_op(F.prelu)
register_elementwise_op(F.rrelu)
register_elementwise_op(F.gelu)
register_elementwise_op(F.logsigmoid)
register_elementwise_op(F.hardshrink)
register_elementwise_op(F.tanhshrink)
register_elementwise_op(F.softsign)
register_elementwise_op(F.softplus)
register_elementwise_op(F.softmin)
register_elementwise_op(F.softmax)
register_elementwise_op(F.softshrink)
register_elementwise_op(F.gumbel_softmax)
register_elementwise_op(F.log_softmax)
register_elementwise_op(F.tanh)
register_elementwise_op(F.sigmoid)
register_elementwise_op(F.hardsigmoid)
register_elementwise_op(F.silu)
register_elementwise_op(F.mish)
# TODO(ver217): dropout handles seed
register_elementwise_op(F.dropout)
register_elementwise_op(F.alpha_dropout)
register_elementwise_op(F.feature_alpha_dropout)

@ -1,142 +0,0 @@
from typing import Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ReplicaSpec, ShardSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor, reduce_input
def colo_embedding_1Dcol(input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
# embedding_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
# Gather splitted lookup table
input_tensor = input_tensor.redistribute(ReplicaSpec())
output_parallel = F.embedding(input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
output_spec = ColoTensorSpec(weight.get_process_group(), ShardSpec([-1], [weight.get_tp_world_size()]),
ComputeSpec(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
compute_spec = weight.compute_spec
if compute_spec.output_replicate:
return output.to_replicate()
else:
return output
def colo_embedding_1Drow(input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
# embedding_1Drow splits the weight(lookup table) to the shape, [num_embeddings/P, embedding_dim]
# get the index of current segment and mask other segments with 0
# get complete input tensor through all-gather
input_tensor = input_tensor.redistribute(ReplicaSpec())
# tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
tensor_parallel_rank = weight.get_process_group().tp_local_rank()
num_embeddings_per_partition = weight.size_local(0)
vocab_start_index = tensor_parallel_rank * num_embeddings_per_partition
vocab_end_index = vocab_start_index + num_embeddings_per_partition
# build the mask.
input_mask = (input_tensor < vocab_start_index) | (input_tensor >= vocab_end_index)
# mask the input.
# TODO(jzy) masked_input may be an activation managed by ColoTensor.
masked_input = input_tensor - vocab_start_index
masked_input[input_mask] = 0
partial_output = F.embedding(masked_input,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
# Mask the output embedding.
partial_output[input_mask, :] = 0.
# Reduce across all the model parallel GPUs.
output = reduce_input(partial_output, weight.get_process_group())
output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(weight.get_process_group(), ReplicaSpec()))
return output
def colo_embedding_1d(mode: str,
input_tensor: ColoTensor,
weight: ColoTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False) -> ColoTensor:
assert mode in ('row', 'col')
funcs = {'row': colo_embedding_1Drow, 'col': colo_embedding_1Dcol}
return funcs[mode](input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
@colo_op_impl(F.embedding)
def colo_embedding(input_tensor: GeneralTensor,
weight: GeneralTensor,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding``.
This method looks up an embedding table.
"""
assert isinstance(weight, ColoTensor)
input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group())
if not weight.has_compute_spec(): # No Model Parallel Applied
assert weight.is_replicate(), 'Invalid weight spec for native embedding op'
return ColoTensor.from_torch_tensor(tensor=F.embedding(input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse),
spec=ColoTensorSpec(weight.get_process_group()))
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.is_shard_1drow():
mode = 'row'
elif weight.is_shard_1dcol():
mode = 'col'
else:
raise NotImplementedError
return colo_embedding_1d(mode,
input_tensor,
weight,
padding_idx=padding_idx,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse)
else:
raise NotImplementedError

@ -1,127 +0,0 @@
from typing import Optional
import torch.nn.functional as F
from torch import Tensor
from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ReplicaSpec, ShardSpec, distspec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
def colo_embedding_bag_1Dcol(input_tensor: ColoTensor,
weight: ColoTensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None) -> ColoTensor:
# embedding_bag_1Dcol split the weight(lookup table) to (num_embeddings, embedding_dim/P)
# Gather splitted lookup table
pg = weight.get_process_group()
input_tensor = input_tensor.redistribute(ReplicaSpec())
output_parallel = F.embedding_bag(input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx)
output_spec = ColoTensorSpec(pg, ShardSpec([-1], [weight.get_tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
output = ColoTensor.from_torch_tensor(output_parallel, spec=output_spec)
if weight.compute_spec.output_replicate:
return output.to_replicate()
else:
return output
def colo_embedding_bag_1d(tp_mode: str,
input_tensor: ColoTensor,
weight: ColoTensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None) -> ColoTensor:
assert tp_mode in ('col',)
funcs = {'col': colo_embedding_bag_1Dcol}
return funcs[tp_mode](input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx)
@colo_op_impl(F.embedding_bag)
def colo_embedding_bag(input_tensor: GeneralTensor,
weight: GeneralTensor,
offsets: Optional[Tensor] = None,
max_norm: Optional[float] = None,
norm_type: float = 2,
scale_grad_by_freq: bool = False,
mode: str = "mean",
sparse: bool = False,
per_sample_weights: Optional[Tensor] = None,
include_last_offset: bool = False,
padding_idx: Optional[int] = None):
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.embedding_bag``.
This method looks up an embedding table.
"""
assert isinstance(weight, ColoTensor)
input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group())
# Handle different parallel actions.
if not weight.has_compute_spec(): # No Model Parallel Applied
assert weight.is_replicate(), 'Invalid weight spec for native embedding op'
return ColoTensor.from_torch_tensor(tensor=F.embedding_bag(input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx),
spec=ColoTensorSpec(weight.get_process_group()))
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.is_shard_1dcol():
tp_mode = 'col'
else:
raise NotImplementedError
return colo_embedding_bag_1d(tp_mode,
input_tensor,
weight,
offsets=offsets,
max_norm=max_norm,
norm_type=norm_type,
scale_grad_by_freq=scale_grad_by_freq,
mode=mode,
sparse=sparse,
per_sample_weights=per_sample_weights,
include_last_offset=include_last_offset,
padding_idx=padding_idx)
else:
raise NotImplementedError

@ -1,28 +0,0 @@
from typing import List, Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec, distspec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
@colo_op_impl(F.layer_norm)
def colo_layernorm(
input_tensor: GeneralTensor,
normalized_shape: List[int],
weight: Optional[GeneralTensor] = None,
bias: Optional[GeneralTensor] = None,
eps: float = 1e-5,
):
assert isinstance(weight, ColoTensor)
input_tensor = convert_to_colo_tensor(input_tensor, weight.get_process_group())
bias = convert_to_colo_tensor(bias, weight.get_process_group())
input_tensor = input_tensor.redistribute(ReplicaSpec())
output = F.layer_norm(input_tensor, normalized_shape, weight=weight, bias=bias, eps=eps)
output = ColoTensor.from_torch_tensor(tensor=output,
spec=ColoTensorSpec(pg=input_tensor.get_process_group(),
dist_attr=input_tensor.dist_spec))
return output

@ -1,171 +0,0 @@
from copy import deepcopy
from typing import Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ReplicaSpec, ShardSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor.sharding_spec import ShardingSpec
from ._utils import GeneralTensor, convert_to_colo_tensor, reduce_grad, reduce_input
def colo_linear_1drow(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor':
# Input:S[1] x Weight:S[0] = Output:P
# All-Reduce(Output) + bias = res
# Input:S[1]
pg = weight.get_process_group()
input_tensor = input_tensor.redistribute(ShardSpec([-1], [weight.get_tp_world_size()]), pg)
# Output:P
partial_output = F.linear(input_tensor, weight)
# Reduce(Output)
output = reduce_input(partial_output, pg)
# Bias
if bias is not None:
assert not bias.has_compute_spec(), 'Invalid bias spec for 1Drow Linear op'
output = output + bias
output = ColoTensor.from_torch_tensor(output, spec=ColoTensorSpec(pg, ReplicaSpec()))
return output
def colo_linear_1dcol(input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor':
# Input:B x Weight:S[1] + Bias:S[1] = Output:S[1]
# All-Gather(Output)
# Input:B
compute_spec = weight.compute_spec
input_tensor = input_tensor.redistribute(ReplicaSpec())
input_parallel = reduce_grad(input_tensor, weight.get_process_group())
output_parallel = F.linear(input_parallel, weight, bias)
output = ColoTensor.from_torch_tensor(output_parallel,
spec=ColoTensorSpec(weight.get_process_group(),
ShardSpec([-1], [weight.get_tp_world_size()]),
ComputeSpec(ComputePattern.TP1D)))
if compute_spec.output_replicate:
return output.to_replicate()
else:
return output
def colo_linear_1d(mode: str, input_tensor: ColoTensor, weight: ColoTensor, bias: Optional[ColoTensor]) -> 'ColoTensor':
assert mode in ('row', 'col')
funcs = {'row': colo_linear_1drow, 'col': colo_linear_1dcol}
return funcs[mode](input_tensor, weight, bias)
# @register_colo_graph(input_pos=[1], param_pos=[2, 3])
def colo_linear_imp(input_tensor: GeneralTensor,
weight: GeneralTensor,
bias: Optional[GeneralTensor] = None) -> 'ColoTensor':
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
This method computes a linear.
"""
assert isinstance(weight, ColoTensor)
pg = weight.get_process_group()
assert pg
input_tensor = convert_to_colo_tensor(input_tensor, pg)
bias = convert_to_colo_tensor(bias, pg)
# input_tensor, weight, bias = tuple(map(convert_to_colo_tensor, (input_tensor, weight, bias)))
# Add communication logic before and after linear call.
ret_tensor = None
if not weight.has_compute_spec(): # No Model Parallel Applied
assert weight.is_replicate(), 'Invalid weight spec for native Linear op'
assert bias is None or bias.is_replicate(), 'Invalid bias spec for native Linear op'
ret_tensor = ColoTensor.from_torch_tensor(F.linear(input_tensor, weight, bias), spec=ColoTensorSpec(pg))
elif weight.has_compute_pattern(ComputePattern.TP1D): # Single Model Parallel Applied
if weight.is_shard_1dcol() and (bias is None or bias.is_replicate()):
mode = 'row'
elif weight.is_shard_1drow() and (bias is None or bias.is_shard_1drow() or bias.is_shard_1dcol()):
mode = 'col'
else:
raise RuntimeError(f"the weight or bias tensor spec is not valid, weight {weight}, bias {bias}")
ret_tensor = colo_linear_1d(mode, input_tensor, weight, bias)
else:
raise NotImplementedError
return ret_tensor
def _new_colo_linear_imp(input_tensor: GeneralTensor,
weight: GeneralTensor,
bias: Optional[GeneralTensor] = None) -> 'ColoTensor':
"""
A tentative function to compute the distributed linear layer with the latest sharding spec.
This function is subject to future change as the current sharding API is not stable.
"""
# get mesh info
input_sharding_seq = input_tensor.sharding_spec.sharding_sequence
weight_sharding_seq = weight.sharding_spec.sharding_sequence
if bias is not None:
bias_sharding_seq = bias.sharding_spec.sharding_sequence
device_mesh = weight.sharding_spec.device_mesh
pg_axis0 = weight.pg_axis0
pg_axis1 = weight.pg_axis1
# the last dim of input should have the same spec as the first dim of weight
# the weight is transposed, so we look at the second dimension
assert input_sharding_seq[-1] == weight_sharding_seq[1]
if bias is not None:
assert bias_sharding_seq[0] == weight_sharding_seq[0]
# compute the output sharding sequence
# as weight is transposed, so we look at the first dimension
output_shard_seq = input_sharding_seq[:-1] + weight_sharding_seq[:1]
output_shard_seq = deepcopy(output_shard_seq)
# TODO: add reduce grad logic
# handle column and row parallel linear
# by reusing the implementation above
out = F.linear(input_tensor, weight)
# run all reduce if necessary
last_dim_spec = input_sharding_seq[-1]
if last_dim_spec.is_replica:
pass
elif last_dim_spec.shard_list is not None:
for dim in last_dim_spec.shard_list:
if dim == 0:
reduce_input(out, pg_axis0)
elif dim == 1:
reduce_input(out, pg_axis1)
else:
raise RuntimeError("Found invalid sharding axis {dim}, only 0 or 1 is expected")
# add bias
if bias is not None:
out += bias
# convert shard seq to partition dict
output_partition_dict = {}
for index, dim_spec in enumerate(output_shard_seq):
if not dim_spec.is_replica:
if index not in output_partition_dict:
output_partition_dict[index] = []
output_partition_dict[index].extend(dim_spec.shard_list)
entire_shape = out.shape
output_sharding_spec = ShardingSpec(device_mesh, entire_shape, output_partition_dict)
ret_tensor = ColoTensor.from_torch_tensor(out)
setattr(ret_tensor, 'sharding_spec', output_sharding_spec)
return ret_tensor
def _has_sharding_spec(tensor):
"""
A tentative function to check whether the tensor is using the new sharding spec API. We assume that the sharding spec object is
set as the attribute `sharding_spec` on a tensor.
"""
return hasattr(tensor, 'sharding_spec')
@colo_op_impl(F.linear)
def colo_linear(input: GeneralTensor, weight: GeneralTensor, bias: Optional[GeneralTensor] = None) -> 'ColoTensor':
if _has_sharding_spec(weight):
return _new_colo_linear_imp(input, weight, bias)
else:
return colo_linear_imp(input, weight, bias)

@ -1,51 +0,0 @@
from typing import Optional
import torch
import torch.nn.functional as F
from colossalai.legacy.nn.loss.loss_1d import VocabParallelCrossEntropyLoss1D
from colossalai.tensor import ColoTensor, ColoTensorSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
@colo_op_impl(F.cross_entropy)
def colo_cross_entropy(input_tensor: GeneralTensor,
target: GeneralTensor,
weight: Optional[GeneralTensor] = None,
size_average: Optional[bool] = None,
ignore_index: int = -100,
reduce: Optional[bool] = None,
reduction: str = "mean",
label_smoothing: float = 0.0):
assert isinstance(weight, ColoTensor) or isinstance(target, ColoTensor) or isinstance(input_tensor, ColoTensor)
pg = input_tensor.get_process_group() if isinstance(input_tensor, ColoTensor) else isinstance(target, ColoTensor)
weight = convert_to_colo_tensor(weight, pg)
target = convert_to_colo_tensor(target, pg)
input_tensor = convert_to_colo_tensor(input_tensor, pg)
if input_tensor.is_replicate(): # Input is gathered
assert target.is_replicate() and (weight is None or weight.is_replicate()), \
"Target tensor and weight tensor both should be complete"
output = F.cross_entropy(input_tensor,
target,
weight=weight,
size_average=size_average,
ignore_index=ignore_index,
reduce=reduce,
reduction=reduction,
label_smoothing=label_smoothing)
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg))
elif input_tensor.has_compute_spec(): # Single Model Parallel Applied
if input_tensor.is_shard_1dcol():
assert weight is None, "Current TP cross entropy loss function doesn't support passing weight tensor in"
assert target.is_replicate(), "Target tensor should be complete in TP cross entropy loss function"
output = VocabParallelCrossEntropyLoss1D()(input_tensor,
target,
process_group=input_tensor.process_group.tp_process_group())
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg))
else:
raise NotImplementedError
else:
raise NotImplementedError

@ -1,96 +0,0 @@
import operator
from functools import reduce
from typing import Optional, Union
import torch
from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec
from colossalai.tensor.op_wrapper import colo_op_impl
def _all_int(my_iter):
return all(isinstance(i, int) for i in my_iter)
def _get_valid_shape(shape):
if isinstance(shape, list):
if _all_int(shape):
return tuple(shape)
else:
raise RuntimeError("expects type(int) but finds an other type")
elif isinstance(shape, tuple):
if _all_int(shape):
return shape
else:
return _get_valid_shape(shape[0])
else:
raise RuntimeError("expects an iterable array but finds '{}'".format(type(shape)))
def _shape_infer(org_sp, tgt_sp):
cnt = 0
pos = 0
for idx, dim in enumerate(tgt_sp):
if dim < -1:
raise RuntimeError("invalid shape dimension {}".format(dim))
elif dim == -1:
cnt += 1
pos = idx
if cnt > 1:
raise RuntimeError("only one dimension can be inferred")
org_prod = reduce(operator.mul, org_sp, 1)
tgt_prod = reduce(operator.mul, tgt_sp, 1)
if cnt == 0:
if org_prod != tgt_prod:
raise RuntimeError("shape '{}' is invalid for input of size {}".format(tgt_sp, org_prod))
else:
return tgt_sp
elif org_prod % tgt_prod != 0:
raise RuntimeError("shape '{}' is invalid for input of size {}".format(tgt_sp, org_prod))
infer_dim = -(org_prod // tgt_prod)
return tgt_sp[:pos] + (infer_dim,) + tgt_sp[pos + 1:]
@colo_op_impl(torch.Tensor.view)
def colo_view(self: ColoTensor, *shape) -> 'ColoTensor':
"""Handles ``__torch_function__`` dispatch for ``torch.Tensor.view``.
Changes the shape of the current tensor.
"""
assert isinstance(self, ColoTensor)
# apply original `view` function for replicated colo tensors
if self.is_replicate():
return self.view(*shape)
cur_sp = self.size()
org_sp = self.size_global()
# parse the passed arguments
tgt_sp = _get_valid_shape(shape)
# get the correct shape from inference
inf_sp = _shape_infer(org_sp, tgt_sp)
if self.is_shard_1drow() and org_sp[0] == inf_sp[0]:
new_shape = (cur_sp[0],) + tgt_sp[1:]
res = self.view(*new_shape)
elif self.is_shard_1dcol() and org_sp[-1] == inf_sp[-1]:
new_shape = tgt_sp[:-1] + (cur_sp[-1],)
res = self.view(*new_shape)
else:
replicated_t = self.redistribute(dist_spec=ReplicaSpec())
return ColoTensor.from_torch_tensor(tensor=replicated_t.view(*shape),
spec=ColoTensorSpec(self.get_process_group()))
return ColoTensor.from_torch_tensor(tensor=res,
spec=ColoTensorSpec(pg=self.get_process_group(), dist_attr=self.dist_spec))
@colo_op_impl(torch.Tensor.size)
def colo_size(self: ColoTensor, dim: Optional[int] = None) -> Union[torch.Size, int]:
size = self.size_global()
if dim is None:
return size
else:
return size[dim]

@ -5,8 +5,8 @@ from contextlib import contextmanager
import torch.nn as nn
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
class ParallelLayer(nn.Module):

@ -1,6 +1,6 @@
import torch.nn as nn
from colossalai.context import ParallelMode, seed
from colossalai.legacy.context import ParallelMode, seed
from ..parallel_1d import *
from ..utils import get_tensor_parallel_mode

@ -1,7 +1,7 @@
import torch
import torch.distributed as dist
from colossalai.core import global_context as gpc
from colossalai.legacy.core import global_context as gpc
try:
import fused_mix_prec_layer_norm_cuda

@ -4,8 +4,8 @@
import torch
import torch.distributed as dist
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from ..utils import divide

@ -10,18 +10,18 @@ import torch.nn.functional as F
from torch import Tensor
from torch.nn.parameter import Parameter
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.kernel import LayerNorm
from colossalai.legacy.communication import broadcast
from colossalai.legacy.context import ParallelMode, seed
from colossalai.legacy.context.parallel_context import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import LAYERS
from colossalai.nn import init as init
from colossalai.utils.checkpointing import (
from colossalai.legacy.utils.checkpointing import (
broadcast_state_dict,
gather_tensor_parallel_state_dict,
partition_tensor_parallel_state_dict,
)
from colossalai.nn import init as init
from colossalai.utils.cuda import get_current_device
from ..base_layer import ParallelLayer

@ -5,10 +5,10 @@ import torch.distributed as dist
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.communication.collective import all_gather, all_reduce, reduce, reduce_scatter
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.utils import get_current_device
@ -31,9 +31,9 @@ def matmul_2d(
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`, optional):
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`, optional):
row parallel mode, defaults to ParallelMode.PARALLEL_2D_ROW.
col_parallel_mode (:class:`colossalai.context.ParallelMode`, optional):
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`, optional):
column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL.
Returns:
@ -146,8 +146,8 @@ def classifier_2d(A: Tensor, B: Tensor, bias: Optional[Tensor], summa_dim: int,
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -172,8 +172,8 @@ class Matmul_AB_2D(torch.autograd.Function):
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -299,8 +299,8 @@ class Matmul_ABT_2D(torch.autograd.Function):
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
@ -433,8 +433,8 @@ class Matmul_ATB_2D(torch.autograd.Function):
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -620,8 +620,8 @@ def add_bias_2d(input_: Tensor, bias: Tensor, output_size_per_partition: int, ro
output_size_per_partition (int): size of output per partition.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
skip_bias_add (bool):
If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion.
data_parallel_rank (int): data parallel rank.
@ -685,8 +685,8 @@ def layernorm_2d(input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, r
E_x (:class:`torch.tensor`): mean.
Var_x (:class:`torch.tensor`): variance.
hidden_size (int): hidden size.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -719,7 +719,7 @@ def all_gather_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMode)
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to gather.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -767,7 +767,7 @@ def reduce_tensor_2d(input_: Tensor, parallel_mode: ParallelMode) -> Tensor:
Args:
input_ (:class:`torch.tensor`): Input tensor.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -795,7 +795,7 @@ def reduce_scatter_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMo
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to reduce.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found

@ -1,6 +1,6 @@
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
def get_summa_dim_from_env() -> int:

@ -8,13 +8,16 @@ import torch.nn.functional as F
from torch import Tensor
from torch.nn import Parameter
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.communication import broadcast
from colossalai.legacy.context import ParallelMode, seed
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import LAYERS
from colossalai.legacy.utils.checkpointing import (
gather_tensor_parallel_state_dict,
partition_tensor_parallel_state_dict,
)
from colossalai.nn import init as init
from colossalai.utils.checkpointing import gather_tensor_parallel_state_dict, partition_tensor_parallel_state_dict
from colossalai.utils.cuda import get_current_device
from ..base_layer import ParallelLayer

@ -5,9 +5,9 @@ import torch.distributed as dist
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.communication.collective import all_gather, all_reduce, reduce_scatter
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.utils import get_current_device
@ -112,8 +112,8 @@ def classifier_2p5d(A: Tensor, B: Tensor, bias, tesseract_dim: int, out_shape: T
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int): the rank of row.
col_rank (int): the rank of column.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -139,8 +139,8 @@ class Matmul_AB_2p5D(torch.autograd.Function):
row_rank (int): the rank of row.
col_rank (int): the rank of column.
dep_rank (int): the rank of depth.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -264,8 +264,8 @@ class Matmul_ABT_2p5D(torch.autograd.Function):
row_rank (int): the rank of row.
col_rank (int): the rank of column.
dep_rank (int): the rank of depth.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -394,8 +394,8 @@ class Matmul_ATB_2p5D(torch.autograd.Function):
row_rank (int): the rank of row.
col_rank (int): the rank of column.
dep_rank (int): the rank of depth.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
@ -606,7 +606,7 @@ def add_bias_2p5d(input: Tensor, bias: Tensor, output_size_per_partition: int, t
row_rank (int): the rank of row.
col_rank (int): the rank of column.
dep_rank (int): the rank of depth.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion.
data_parallel_rank (int): data parallel rank.
@ -631,7 +631,7 @@ class _Layernorm2p5D(torch.autograd.Function):
E_x (:class:`torch.tensor`): mean.
Var_x (:class:`torch.tensor`): variance.
hidden_size (int): hidden size.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -682,7 +682,7 @@ def layernorm_2p5d(input: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int,
E_x (:class:`torch.tensor`): mean.
Var_x (:class:`torch.tensor`): variance.
hidden_size (int): hidden size.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
row_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): row parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -715,7 +715,7 @@ def all_gather_tensor_2p5d(inputs: Tensor, dim: int, col_parallel_mode: Parallel
Args:
inputs (:class:`torch.tensor`): input tensor.
dim (int): dimension of all-gather.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -730,7 +730,7 @@ class SplitFirst(torch.autograd.Function):
Args:
inputs (:class:`torch.tensor`): input tensor.
tesseract_dim (int): dimension of TESSERACT fo 2.5D parallelism
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
col_parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): column parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -798,7 +798,7 @@ def reduce_tensor_2p5d(input_: Tensor, parallel_mode: ParallelMode) -> Tensor:
Args:
input_ (:class:`torch.tensor`): Input tensor.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -826,7 +826,7 @@ def reduce_scatter_tensor_2p5d(input_: Tensor, dim: int, parallel_mode: Parallel
Args:
input_ (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to reduce.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found

@ -1,6 +1,6 @@
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
def get_tesseract_dim_dep_from_env():

@ -8,17 +8,17 @@ import torch.nn.functional as F
from torch import Tensor
from torch.nn import Parameter
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.communication import broadcast
from colossalai.legacy.context import ParallelMode, seed
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.registry import LAYERS
from colossalai.nn import init as init
from colossalai.utils.checkpointing import (
from colossalai.legacy.utils.checkpointing import (
broadcast_state_dict,
gather_tensor_parallel_state_dict,
partition_tensor_parallel_state_dict,
)
from colossalai.nn import init as init
from colossalai.utils.cuda import get_current_device
from ..base_layer import ParallelLayer

@ -7,10 +7,10 @@ import torch
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.communication import all_gather, all_reduce, broadcast, reduce, reduce_scatter
from colossalai.legacy.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from ._utils import get_parallel_mode_from_env, push_async_grad
@ -73,9 +73,9 @@ def linear_3d(
Args:
input_ (:class:`torch.tensor`): input matrix.
weight (:class:`torch.tensor`): matrix of weight.
input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode.
output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode.
input_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): weight parallel mode.
output_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): output parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -166,9 +166,9 @@ def classifier_3d(
input_ (:class:`torch.tensor`): input matrix.
weight (:class:`torch.tensor`): matrix of weight.
bias (:class:`torch.tensor`): matrix of bias.
input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode.
output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode.
input_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): weight parallel mode.
output_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): output parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -260,9 +260,9 @@ def vocab_parallel_classifier_3d(
input_ (:class:`torch.tensor`): input matrix.
weight (:class:`torch.tensor`): matrix of weight.
bias (:class:`torch.tensor`): matrix of bias.
input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode.
output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode.
input_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): weight parallel mode.
output_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): output parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -378,8 +378,8 @@ def layernorm_3d(
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps (float): a value added to the denominator for numerical stability
output_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): output parallel mode.
input_x_weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input x weight parallel mode.
output_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): output parallel mode.
input_x_weight_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): input x weight parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -404,7 +404,7 @@ def split_tensor_3d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Te
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Specified dimension in which to split.
parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): Parallel mode.
parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`, optional): Parallel mode.
Returns:
:class:`torch.tensor`: The tensor has been split.
@ -434,8 +434,8 @@ def split_batch_3d(input_: Tensor,
Args:
input_ (:class:`torch.tensor`): Input tensor.
dim (int): Specified dimension in which to split.
input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): input parallel mode.
weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): weight parallel mode.
input_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`, optional): input parallel mode.
weight_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`, optional): weight parallel mode.
Returns:
:class:`torch.tensor`: The tensor has been split.
@ -471,7 +471,7 @@ def reduce_tensor_3d(tensor: Tensor, parallel_mode: ParallelMode) -> Tensor:
Args:
tensor (:class:`torch.tensor`): Input tensor.
parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): Parallel mode.
parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): Parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -501,7 +501,7 @@ def all_gather_tensor_3d(tensor: Tensor, dim: int, parallel_mode: ParallelMode)
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to gather.
parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): Parallel mode.
parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): Parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -530,7 +530,7 @@ def reduce_scatter_tensor_3d(tensor: Tensor, dim: int, parallel_mode: ParallelMo
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to scatter.
parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): Parallel mode.
parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): Parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -578,8 +578,8 @@ def reduce_by_batch_3d(tensor: Tensor,
r"""All-reduce the input from the model parallel region.
Args:
input_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): weight parallel mode.
input_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): input parallel mode.
weight_parallel_mode (:class:`colossalai.legacy.context.parallel_mode.ParallelMode`): weight parallel mode.
reduce_mean (bool, optional): If set to ``True``, it will divide the output by
(input parallel size * weight parallel size), default to False.

@ -4,9 +4,15 @@ from functools import partial
import torch
from torch import Tensor
from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.constants import (
INPUT_GROUP_3D,
INPUT_X_WEIGHT_3D,
OUTPUT_GROUP_3D,
OUTPUT_X_WEIGHT_3D,
WEIGHT_GROUP_3D,
)
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
def get_depth_from_env() -> int:

@ -8,19 +8,25 @@ import torch.nn.functional as F
from torch import Tensor
from torch.nn import Parameter
from colossalai.constants import INPUT_GROUP_3D, INPUT_X_WEIGHT_3D, OUTPUT_GROUP_3D, OUTPUT_X_WEIGHT_3D, WEIGHT_GROUP_3D
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.communication import all_reduce, broadcast
from colossalai.legacy.constants import (
INPUT_GROUP_3D,
INPUT_X_WEIGHT_3D,
OUTPUT_GROUP_3D,
OUTPUT_X_WEIGHT_3D,
WEIGHT_GROUP_3D,
)
from colossalai.legacy.context import ParallelMode, seed
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.nn.layer.base_layer import ParallelLayer
from colossalai.legacy.registry import LAYERS
from colossalai.nn import init as init
from colossalai.utils.checkpointing import (
from colossalai.legacy.utils.checkpointing import (
broadcast_state_dict,
gather_tensor_parallel_state_dict,
partition_tensor_parallel_state_dict,
)
from colossalai.nn import init as init
from colossalai.utils.cuda import get_current_device
from ..utils import divide, set_tensor_parallel_attribute_by_partition, to_2tuple

@ -5,9 +5,9 @@ import torch
from torch import distributed as dist
from torch.cuda.amp import custom_bwd, custom_fwd
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.communication import ring_forward
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.nn.layer.parallel_sequence._utils import _calc_current_device_range, _calc_incoming_device_range
from colossalai.utils import get_current_device

@ -9,11 +9,11 @@ import torch.nn.functional as F
from torch.nn import Parameter
import colossalai
from colossalai.context import seed
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.kernel import FusedScaleMaskSoftmax
from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType
from colossalai.legacy.context import seed
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.nn.layer.parallel_sequence._operation import RingAV, RingQK
from colossalai.legacy.registry import LAYERS

@ -8,9 +8,9 @@ import numpy as np
import torch
from torch import Tensor, nn
from colossalai.constants import IS_TENSOR_PARALLEL, NUM_PARTITIONS
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.utils import checkpoint
from colossalai.legacy.constants import IS_TENSOR_PARALLEL, NUM_PARTITIONS
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.utils import checkpoint
class CheckpointModule(nn.Module):

@ -7,7 +7,7 @@ from torch import Tensor
from torch import nn as nn
from torch.nn.parameter import Parameter
from colossalai.context import seed
from colossalai.legacy.context import seed
from colossalai.legacy.registry import LAYERS
from colossalai.nn import init as init
from colossalai.utils.cuda import get_current_device
@ -64,7 +64,7 @@ class WrappedDropout(nn.Module):
Args:
p (float, optional): probability of an element to be zeroed, defaults 0.5.
inplace (bool, optional): whether to do dropout in-place, default to be False.
mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
@ -101,7 +101,7 @@ class WrappedDropPath(nn.Module):
Args:
p (float, optional): probability of dropping path, defaults 0.0.
mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found

@ -3,8 +3,8 @@ from typing import List, Tuple, Union
import torch.distributed as dist
import torch.nn as nn
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
class PipelineSharedModuleWrapper:

@ -2,7 +2,7 @@ from torch import nn
from torch.nn.modules.loss import *
from torch.nn.modules.loss import _Loss
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.legacy.global_variables import tensor_parallel_env as env
from colossalai.legacy.nn.layer.utils import get_tensor_parallel_mode
from .loss_1d import VocabParallelCrossEntropyLoss1D

@ -3,8 +3,8 @@ import torch.distributed as dist
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.modules.loss import _Loss
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.registry import LOSSES

@ -4,8 +4,8 @@ from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.functional import cross_entropy
from torch.nn.modules.loss import _Loss
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.nn.layer.parallel_2d import reduce_by_batch_2d, split_batch_2d
from colossalai.legacy.nn.layer.parallel_2d._utils import assert_summa_initialization
from colossalai.legacy.registry import LOSSES

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save