Browse Source

[example] update ViT example using booster api (#3940)

pull/3972/head
Baizhou Zhang 1 year ago committed by GitHub
parent
commit
b3ab7fbabf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 65
      examples/images/vit/README.md
  2. 124
      examples/images/vit/args.py
  3. 32
      examples/images/vit/configs/vit_1d_tp2.py
  4. 32
      examples/images/vit/configs/vit_1d_tp2_ci.py
  5. 32
      examples/images/vit/data.py
  6. 6
      examples/images/vit/requirements.txt
  7. 15
      examples/images/vit/run.sh
  8. 27
      examples/images/vit/run_benchmark.sh
  9. 44
      examples/images/vit/run_demo.sh
  10. 24
      examples/images/vit/test_ci.sh
  11. 160
      examples/images/vit/test_vit.py
  12. 174
      examples/images/vit/train.py
  13. 95
      examples/images/vit/vit.py
  14. 129
      examples/images/vit/vit_benchmark.py
  15. 177
      examples/images/vit/vit_train_demo.py
  16. 11
      examples/language/opt/opt_benchmark.py
  17. 15
      examples/language/opt/opt_train_demo.py

65
examples/images/vit/README.md

@ -1,61 +1,28 @@
# Vision Transformer with ColoTensor
## Overview
# Overview
Vision Transformer is a class of Transformer model tailored for computer vision tasks. It was first proposed in paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) and achieved SOTA results on various tasks at that time.
In this example, we will run Vision Transformer with ColoTensor.
In our example, we are using pretrained weights of ViT loaded from HuggingFace.
We adapt the ViT training code to ColossalAI by leveraging [Boosting API](https://colossalai.org/docs/basics/booster_api) loaded with a chosen plugin, where each plugin corresponds to a specific kind of training strategy. This example supports plugins including TorchDDPPlugin, LowLevelZeroPlugin, and GeminiPlugin.
We use model **ViTForImageClassification** from Hugging Face [Link](https://huggingface.co/docs/transformers/model_doc/vit) for unit test.
You can change world size or decide whether use DDP in our code.
## Run Demo
We use model **vision_transformer** from timm [Link](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) for training example.
(2022/6/28) The default configuration now supports 2DP+2TP with gradient accumulation and checkpoint support. Zero is not supported at present.
# Requirement
Install colossalai version >= 0.1.11
## Unit test
To run unit test, you should install pytest, transformers with:
```shell
pip install pytest transformers
By running the following script:
```bash
bash run_demo.sh
```
You will finetune a a [ViT-base](https://huggingface.co/google/vit-base-patch16-224) model on this [dataset](https://huggingface.co/datasets/beans), with more than 8000 images of bean leaves. This dataset is for image classification task and there are 3 labels: ['angular_leaf_spot', 'bean_rust', 'healthy'].
## Training example
To run training example with ViT-S, you should install **NVIDIA DALI** from [Link](https://docs.nvidia.com/deeplearning/dali/user-guide/docs/installation.html) for dataloader support.
You also need to install timm and titans for model/dataloader support with:
```shell
pip install timm titans
```
The script can be modified if you want to try another set of hyperparameters or change to another ViT model with different size.
### Data preparation
You can download the ImageNet dataset from the [ImageNet official website](https://www.image-net.org/download.php). You should get the raw images after downloading the dataset. As we use **NVIDIA DALI** to read data, we use the TFRecords dataset instead of raw Imagenet dataset. This offers better speedup to IO. If you don't have TFRecords dataset, follow [imagenet-tools](https://github.com/ver217/imagenet-tools) to build one.
The demo code refers to this [blog](https://huggingface.co/blog/fine-tune-vit).
Before you start training, you need to set the environment variable `DATA` so that the script knows where to fetch the data for DALI dataloader.
```shell
export DATA=/path/to/ILSVRC2012
```
# How to run
## Run Benchmark
## Unit test
In your terminal
```shell
pytest test_vit.py
You can run benchmark for ViT model by running the following script:
```bash
bash run_benchmark.sh
```
This will evaluate models with different **world_size** and **use_ddp**.
## Training example
Modify the settings in run.sh according to your environment.
For example, if you set `--nproc_per_node=8` in `run.sh` and `TP_WORLD_SIZE=2` in your config file,
data parallel size will be automatically calculated as 4.
Thus, the parallel strategy is set to 4DP+2TP.
Then in your terminal
```shell
sh run.sh
```
This will start ViT-S training with ImageNet.
The script will test performance (throughput & peak memory usage) for each combination of hyperparameters. You can also play with this script to configure your own set of hyperparameters for testing.

124
examples/images/vit/args.py

@ -0,0 +1,124 @@
from colossalai import get_default_parser
def parse_demo_args():
parser = get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="google/vit-base-patch16-224",
help="Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument(
"--output_path",
type=str,
default="./output_model.bin",
help="The path of your saved model after finetuning."
)
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
)
parser.add_argument(
"--num_epoch",
type=int,
default=3,
help="Number of epochs."
)
parser.add_argument(
"--batch_size",
type=int,
default=32,
help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--learning_rate",
type=float,
default=3e-4,
help="Initial learning rate (after the potential warmup period) to use."
)
parser.add_argument(
"--warmup_ratio",
type=float,
default=0.3,
help="Ratio of warmup steps against total training steps."
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.1,
help="Weight decay to use."
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="A seed for reproducible training."
)
args = parser.parse_args()
return args
def parse_benchmark_args():
parser = get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
default="google/vit-base-patch16-224",
help="Path to a pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument(
"--plugin",
type=str,
default="gemini",
help="Plugin to use. Valid plugins include 'torch_ddp','torch_ddp_fp16','gemini','low_level_zero'."
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="Batch size (per dp group) for the training dataloader."
)
parser.add_argument(
"--num_labels",
type=int,
default=10,
help="Number of labels for classification."
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use."
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Weight decay to use."
)
parser.add_argument(
"--max_train_steps",
type=int,
default=20,
help="Total number of training steps to perform."
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="A seed for reproducible training."
)
parser.add_argument(
"--mem_cap",
type=int,
default=0,
help="Limit on the usage of space for each GPU (in GB)."
)
args = parser.parse_args()
return args

32
examples/images/vit/configs/vit_1d_tp2.py

@ -1,32 +0,0 @@
from colossalai.amp import AMP_TYPE
# hyperparameters
# BATCH_SIZE is as per GPU
# global batch size = BATCH_SIZE x data parallel size
BATCH_SIZE = 256
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3
NUM_EPOCHS = 300
WARMUP_EPOCHS = 32
# model config
IMG_SIZE = 224
PATCH_SIZE = 16
HIDDEN_SIZE = 384
DEPTH = 12
NUM_HEADS = 6
MLP_RATIO = 4
NUM_CLASSES = 1000
CHECKPOINT = False
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
USE_DDP = True
TP_WORLD_SIZE = 2
TP_TYPE = 'row'
parallel = dict(tensor=dict(mode="1d", size=TP_WORLD_SIZE),)
fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0
gradient_accumulation = 8
LOG_PATH = "./log"

32
examples/images/vit/configs/vit_1d_tp2_ci.py

@ -1,32 +0,0 @@
from colossalai.amp import AMP_TYPE
# hyperparameters
# BATCH_SIZE is as per GPU
# global batch size = BATCH_SIZE x data parallel size
BATCH_SIZE = 8
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3
NUM_EPOCHS = 3
WARMUP_EPOCHS = 1
# model config
IMG_SIZE = 224
PATCH_SIZE = 16
HIDDEN_SIZE = 32
DEPTH = 2
NUM_HEADS = 4
MLP_RATIO = 4
NUM_CLASSES = 10
CHECKPOINT = False
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
USE_DDP = True
TP_WORLD_SIZE = 2
TP_TYPE = 'row'
parallel = dict(tensor=dict(mode="1d", size=TP_WORLD_SIZE),)
fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0
gradient_accumulation = 2
LOG_PATH = "./log_ci"

32
examples/images/vit/data.py

@ -0,0 +1,32 @@
import torch
from torch.utils.data import Dataset
from datasets import load_dataset
class BeansDataset(Dataset):
def __init__(self, image_processor, split='train'):
super().__init__()
self.image_processor = image_processor
self.ds = load_dataset('beans')[split]
self.label_names = self.ds.features['labels'].names
self.num_labels = len(self.label_names)
self.inputs = []
for example in self.ds:
self.inputs.append(self.process_example(example))
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return self.inputs[idx]
def process_example(self, example):
input = self.image_processor(example['image'], return_tensors='pt')
input['labels'] = example['labels']
return input
def beans_collator(batch):
return {'pixel_values': torch.cat([data['pixel_values'] for data in batch], dim=0),
'labels': torch.tensor([data['labels'] for data in batch], dtype=torch.int64)}

6
examples/images/vit/requirements.txt

@ -1,8 +1,6 @@
colossalai >= 0.1.12
torch >= 1.8.1
numpy>=1.24.1
timm>=0.6.12
titans>=0.0.7
tqdm>=4.61.2
transformers>=4.25.1
nvidia-dali-cuda110>=1.8.0 --extra-index-url https://developer.download.nvidia.com/compute/redist
transformers>=4.20.0
datasets

15
examples/images/vit/run.sh

@ -1,15 +0,0 @@
export DATA=/data/scratch/imagenet/tf_records
export OMP_NUM_THREADS=4
# resume
# CUDA_VISIBLE_DEVICES=4,5,6,7 colossalai run \
# --nproc_per_node 4 train.py \
# --config configs/vit_1d_tp2.py \
# --resume_from checkpoint/epoch_10 \
# --master_port 29598 | tee ./out 2>&1
# train
CUDA_VISIBLE_DEVICES=4,5,6,7 colossalai run \
--nproc_per_node 4 train.py \
--config configs/vit_1d_tp2.py \
--master_port 29598 | tee ./out 2>&1

27
examples/images/vit/run_benchmark.sh

@ -0,0 +1,27 @@
set -xe
pip install -r requirements.txt
export BS=8
export MEMCAP=0
export GPUNUM=1
for BS in 8 32 128
do
for PLUGIN in "torch_ddp" "torch_ddp_fp16" "low_level_zero" "gemini"
do
for GPUNUM in 1 4
do
MODEL_PATH="google/vit-base-patch16-224"
torchrun \
--standalone \
--nproc_per_node ${GPUNUM} \
vit_benchmark.py \
--model_name_or_path ${MODEL_PATH} \
--mem_cap ${MEMCAP} \
--plugin ${PLUGIN} \
--batch_size ${BS}
done
done
done

44
examples/images/vit/run_demo.sh

@ -0,0 +1,44 @@
set -xe
pip install -r requirements.txt
# model name or path
MODEL="google/vit-base-patch16-224"
# path for saving model
OUTPUT_PATH="./output_model.bin"
# plugin(training strategy)
# can only be one of "torch_ddp"/"torch_ddp_fp16"/"low_level_zero"/"gemini"
PLUGIN="gemini"
# number of gpus to use
GPUNUM=4
# batch size per gpu
BS=16
# learning rate
LR="2e-4"
# number of epoch
EPOCH=3
# weight decay
WEIGHT_DECAY=0.05
# ratio of warmup steps
WARMUP_RATIO=0.3
# run the script for demo
torchrun \
--standalone \
--nproc_per_node ${GPUNUM} \
vit_train_demo.py \
--model_name_or_path ${MODEL} \
--output_path ${OUTPUT_PATH} \
--plugin ${PLUGIN} \
--batch_size ${BS} \
--num_epoch ${EPOCH} \
--learning_rate ${LR} \
--weight_decay ${WEIGHT_DECAY} \
--warmup_ratio ${WARMUP_RATIO}

24
examples/images/vit/test_ci.sh

@ -1,9 +1,19 @@
export OMP_NUM_THREADS=4
set -xe
pip install -r requirements.txt
# train
colossalai run \
--nproc_per_node 4 train.py \
--config configs/vit_1d_tp2_ci.py \
--dummy_data
BS=8
for PLUGIN in "torch_ddp" "torch_ddp_fp16" "low_level_zero" "gemini"
do
for GPUNUM in 1 4
do
torchrun \
--standalone \
--nproc_per_node ${GPUNUM} \
vit_benchmark.py \
--model_name_or_path "google/vit-base-patch16-224" \
--plugin ${PLUGIN} \
--batch_size ${BS}
done
done

160
examples/images/vit/test_vit.py

@ -1,160 +0,0 @@
import os
import random
import numpy as np
import pytest
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from vit import get_training_components
import colossalai
from colossalai.context import ParallelMode
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.parallel.data_parallel import ColoDDP
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def tensor_equal(A, B):
return torch.allclose(A, B, rtol=1e-3, atol=1e-1)
def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor):
assert tensor.ndim == shard.ndim
if tensor.shape == shard.shape:
return tensor_equal(tensor, shard)
else:
dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape))
if dims_not_eq.numel() == 1:
# 1D shard
dim = dims_not_eq.item()
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
return tensor_equal(tensor.chunk(world_size, dim)[rank], shard)
else:
raise
# Only for all Linear, it's 1d_row split because Linear will be transposed when calculating.
# But for other layers, it's 1d_col split.
# Layernorm is not supported for now.
# patch_embeddings.projection has nn.Conv2d
# https://github.com/huggingface/transformers/blob/dcb08b99f44919425f8ba9be9ddcc041af8ec25e/src/transformers/models/vit/modeling_vit.py#L182
def init_1d_row_for_linear_weight_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if 'weight' in n and 'layernorm' not in n and 'embeddings.patch_embeddings.projection.weight' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
# Similarly, it's col split for Linear but row split for others.
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if ('weight' in n
or 'bias' in n) and 'layernorm' not in n and 'embeddings.patch_embeddings.projection' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
def check_param_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
assert tensor_shard_equal(torch_p, p)
def check_grad_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
if (torch_p.grad.shape == p.grad.shape):
assert torch.allclose(torch_p.grad, p.grad, rtol=1e-3, atol=2.0) == True
else:
dims_not_eq = torch.nonzero(torch.tensor(torch_p.grad.shape) != torch.tensor(p.grad.shape))
dim = dims_not_eq.item()
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
assert torch.allclose(torch_p.grad.chunk(world_size, dim)[rank], p.grad, rtol=1e-3, atol=2.0) == True
def run_vit(init_spec_func, use_ddp):
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_training_components()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = model.cuda()
torch_model = model_builder().cuda()
if use_ddp:
model = ColoDDP(model)
torch_model = DDP(torch_model,
device_ids=[gpc.get_global_rank()],
process_group=gpc.get_group(ParallelMode.DATA))
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p)
world_size = torch.distributed.get_world_size()
init_spec_func(model, world_size)
check_param_equal(model, torch_model)
model.train()
torch_model.train()
set_seed(gpc.get_local_rank(ParallelMode.DATA))
optimizer = optimizer_class(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
torch_optimizer = optimizer_class(torch_model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i, image_dict in enumerate(train_dataloader):
if use_ddp:
model.zero_grad()
else:
optimizer.zero_grad()
logits = model(image_dict['pixel_values'])
torch_logits = torch_model(image_dict['pixel_values'])
assert tensor_equal(torch_logits.logits, logits.logits)
loss = criterion(logits.logits, image_dict['label'])
torch_loss = criterion(torch_logits.logits, image_dict['label'])
if use_ddp:
model.backward(loss)
else:
loss.backward()
torch_loss.backward()
check_grad_equal(model, torch_model)
optimizer.step()
torch_optimizer.step()
check_param_equal(model, torch_model)
break
def run_dist(rank, world_size, port, use_ddp):
if use_ddp and world_size == 1:
return
tp_world_size = world_size // 2 if use_ddp else world_size
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_vit(init_1d_row_for_linear_weight_spec, use_ddp)
run_vit(init_1d_col_for_linear_weight_bias_spec, use_ddp)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.parametrize('use_ddp', [False, True])
@rerun_if_address_is_in_use()
def test_vit(world_size, use_ddp):
spawn(run_dist, world_size, use_ddp=use_ddp)
if __name__ == '__main__':
test_vit(1, False)

174
examples/images/vit/train.py

@ -1,174 +0,0 @@
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import _create_vision_transformer
from titans.dataloader.imagenet import build_dali_imagenet
from tqdm import tqdm
from vit import DummyDataLoader
import colossalai
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn import CrossEntropyLoss
from colossalai.nn._ops import *
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.parallel.data_parallel import ColoDDP
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext
def init_1d_row_for_linear_weight_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if 'weight' in n and 'norm' not in n and 'patch_embed.proj.weight' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
# Similarly, it's col split for Linear but row split for others.
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if ('weight' in n or 'bias' in n) and 'norm' not in n and ('patch_embed.proj.weight' not in n
and 'patch_embed.proj.bias' not in n):
p.set_process_group(pg)
p.set_tensor_spec(*spec)
def init_spec_func(model, tp_type):
world_size = torch.distributed.get_world_size()
if tp_type == 'row':
init_1d_row_for_linear_weight_spec(model, world_size)
elif tp_type == 'col':
init_1d_col_for_linear_weight_bias_spec(model, world_size)
else:
raise NotImplemented
def train_imagenet():
parser = colossalai.get_default_parser()
parser.add_argument('--resume_from', default=False, action='store_true')
parser.add_argument('--dummy_data', default=False, action='store_true')
args = parser.parse_args()
colossalai.launch_from_torch(config=args.config)
use_ddp = gpc.config.USE_DDP
disable_existing_loggers()
logger = get_dist_logger()
if hasattr(gpc.config, 'LOG_PATH'):
if gpc.get_global_rank() == 0:
log_path = gpc.config.LOG_PATH
if not os.path.exists(log_path):
os.mkdir(log_path)
logger.log_to_file(log_path)
logger.info('Build data loader', ranks=[0])
if not args.dummy_data:
root = os.environ['DATA']
train_dataloader, test_dataloader = build_dali_imagenet(root,
train_batch_size=gpc.config.BATCH_SIZE,
test_batch_size=gpc.config.BATCH_SIZE)
else:
train_dataloader = DummyDataLoader(length=10,
batch_size=gpc.config.BATCH_SIZE,
category=gpc.config.NUM_CLASSES,
image_size=gpc.config.IMG_SIZE,
return_dict=False)
test_dataloader = DummyDataLoader(length=5,
batch_size=gpc.config.BATCH_SIZE,
category=gpc.config.NUM_CLASSES,
image_size=gpc.config.IMG_SIZE,
return_dict=False)
logger.info('Build model', ranks=[0])
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
embed_dim=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=gpc.config.NUM_CLASSES,
drop_rate=0.1,
attn_drop_rate=0.1,
weight_init='jax')
with ColoInitContext(device=get_current_device()):
model = _create_vision_transformer('vit_small_patch16_224', pretrained=False, **model_kwargs)
init_spec_func(model, gpc.config.TP_TYPE)
world_size = torch.distributed.get_world_size()
model = ColoDDP(module=model, process_group=ProcessGroup(tp_degree=world_size))
logger.info('Build criterion, optimizer, lr_scheduler', ranks=[0])
optimizer = HybridAdam(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
criterion = CrossEntropyLoss()
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
total_steps=gpc.config.NUM_EPOCHS,
warmup_steps=gpc.config.WARMUP_EPOCHS)
start_epoch = 0
if args.resume_from:
load_model = torch.load(args.resume_from + '_model.pth')
start_epoch = load_model['epoch']
model.load_state_dict(load_model['model'])
load_optim = torch.load(args.resume_from + '_optim_rank_{}.pth'.format(dist.get_rank()))
optimizer.load_state_dict(load_optim['optim'])
for epoch in range(start_epoch, gpc.config.NUM_EPOCHS):
model.train()
for index, (x, y) in tqdm(enumerate(train_dataloader), total=len(train_dataloader), leave=False):
x, y = x.cuda(), y.cuda()
output = model(x)
loss = criterion(output, y)
loss = loss / gpc.config.gradient_accumulation
if use_ddp:
model.backward(loss)
else:
loss.backward()
if (index + 1) % gpc.config.gradient_accumulation == 0:
optimizer.step()
if use_ddp:
model.zero_grad()
else:
optimizer.zero_grad()
logger.info(
f"Finish Train Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {loss.item():.3f} lr: {optimizer.state_dict()['param_groups'][0]['lr']}",
ranks=[0])
model.eval()
test_loss = 0
correct = 0
test_sum = 0
with torch.no_grad():
for index, (x, y) in tqdm(enumerate(test_dataloader), total=len(test_dataloader), leave=False):
x, y = x.cuda(), y.cuda()
output = model(x)
test_loss += F.cross_entropy(output, y, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(y.view_as(pred)).sum().item()
test_sum += y.size(0)
test_loss /= test_sum
logger.info(
f"Finish Test Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {test_loss:.3f} Accuracy: [{correct}/{test_sum}]({correct/test_sum:.3f})",
ranks=[0])
lr_scheduler.step()
if __name__ == '__main__':
train_imagenet()

95
examples/images/vit/vit.py

@ -1,95 +0,0 @@
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from transformers import ViTConfig, ViTForImageClassification
from colossalai.utils.cuda import get_current_device
class DummyDataGenerator(ABC):
def __init__(self, length=10):
self.length = length
@abstractmethod
def generate(self):
pass
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
class DummyDataLoader(DummyDataGenerator):
def __init__(self, length=10, batch_size=4, channel=3, category=8, image_size=224, return_dict=True):
super().__init__(length)
self.batch_size = batch_size
self.channel = channel
self.category = category
self.image_size = image_size
self.return_dict = return_dict
def generate(self):
image_dict = {}
image_dict['pixel_values'] = torch.rand(
self.batch_size, self.channel, self.image_size, self.image_size, device=get_current_device()) * 2 - 1
image_dict['label'] = torch.randint(self.category, (self.batch_size,),
dtype=torch.int64,
device=get_current_device())
if not self.return_dict:
return image_dict['pixel_values'], image_dict['label']
return image_dict
class ViTCVModel(nn.Module):
def __init__(self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
image_size=224,
patch_size=16,
num_channels=3,
num_labels=8,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.model = ViTForImageClassification(
ViTConfig(hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
image_size=image_size,
patch_size=patch_size,
num_channels=num_channels,
num_labels=num_labels))
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, pixel_values):
return self.model(pixel_values=pixel_values)
def vit_base_s(checkpoint=True):
return ViTCVModel(checkpoint=checkpoint)
def vit_base_micro(checkpoint=True):
return ViTCVModel(hidden_size=32, num_hidden_layers=2, num_attention_heads=4, checkpoint=checkpoint)
def get_training_components():
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
return vit_base_micro, trainloader, testloader, torch.optim.Adam, torch.nn.functional.cross_entropy

129
examples/images/vit/vit_benchmark.py

@ -0,0 +1,129 @@
import time
import torch
import transformers
from transformers import ViTConfig, ViTForImageClassification
import tqdm
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.utils import get_current_device
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from args import parse_benchmark_args
def format_num(num: int, bytes=False):
"""Scale bytes to its proper format, e.g. 1253656 => '1.20MB'"""
factor = 1024 if bytes else 1000
suffix = "B" if bytes else ""
for unit in ["", " K", " M", " G", " T", " P"]:
if num < factor:
return f"{num:.2f}{unit}{suffix}"
num /= factor
def get_data(batch_size, num_labels, num_channels=3, height=224, width=224):
pixel_values = torch.randn(batch_size, num_channels, height, width, device=torch.cuda.current_device(), dtype=torch.float)
labels = torch.randint(0, num_labels, (batch_size, ), device=torch.cuda.current_device(), dtype=torch.int64)
return pixel_values, labels
def colo_memory_cap(size_in_GB):
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
cuda_capacity = colo_device_memory_capacity(get_current_device())
if size_in_GB * (1024**3) < cuda_capacity:
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
print(f"Limiting GPU memory usage to {size_in_GB} GB")
def main():
args = parse_benchmark_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
coordinator = DistCoordinator()
world_size = coordinator.world_size
# Manage loggers
disable_existing_loggers()
logger = get_dist_logger()
if coordinator.is_master():
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Whether to set limit on memory capacity
if args.mem_cap > 0:
colo_memory_cap(args.mem_cap)
# Build ViT model
config = ViTConfig.from_pretrained(args.model_name_or_path)
model = ViTForImageClassification(config)
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Set plugin
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
plugin = GeminiPlugin(device=get_current_device(),
placement_policy='cpu',
pin_memory=True,
strict_ddp_mode=True,
initial_scale=2**5)
elif args.plugin == 'low_level_zero':
plugin = LowLevelZeroPlugin(initial_scale=2**5)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Set optimizer
optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size))
# Set booster
booster = Booster(plugin=plugin, **booster_kwargs)
model, optimizer, _, _, _ = booster.boost(model, optimizer)
# Start training.
logger.info(f"Start testing", ranks=[0])
progress_bar = tqdm.tqdm(total=args.max_train_steps, desc="Training Step", disable=not coordinator.is_master())
torch.cuda.synchronize()
model.train()
start_time = time.time()
for _ in range(args.max_train_steps):
pixel_values, labels = get_data(args.batch_size, args.num_labels, 3, 224, 224)
optimizer.zero_grad()
outputs = model(pixel_values=pixel_values, labels=labels)
loss = outputs['loss']
booster.backward(loss, optimizer)
optimizer.step()
torch.cuda.synchronize()
progress_bar.update(1)
# Compute Statistics
end_time = time.time()
throughput = "{:.4f}".format((world_size * args.max_train_steps * args.batch_size) / (end_time - start_time))
max_mem = format_num(torch.cuda.max_memory_allocated(device=torch.cuda.current_device()), bytes=True)
logger.info(f"Testing finished, "
f"batch size per gpu: {args.batch_size}, "
f"plugin: {args.plugin}, "
f"throughput: {throughput}, "
f"maximum memory usage per gpu: {max_mem}.",
ranks=[0])
if __name__ == "__main__":
main()

177
examples/images/vit/vit_train_demo.py

@ -0,0 +1,177 @@
import torch
import torch.distributed as dist
import transformers
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor
from tqdm import tqdm
import colossalai
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.utils import get_current_device
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from args import parse_demo_args
from data import BeansDataset, beans_collator
def move_to_cuda(batch, device):
return {k: v.to(device) for k, v in batch.items()}
def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator):
torch.cuda.synchronize()
model.train()
with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar:
for batch in pbar:
# Foward
optimizer.zero_grad()
batch = move_to_cuda(batch, torch.cuda.current_device())
outputs = model(**batch)
loss = outputs['loss']
# Backward
booster.backward(loss, optimizer)
optimizer.step()
lr_scheduler.step()
# Print batch loss
pbar.set_postfix({'loss': loss.item()})
@torch.no_grad()
def evaluate_model(epoch, model, eval_dataloader, num_labels, coordinator):
model.eval()
accum_loss = torch.zeros(1, device=get_current_device())
total_num = torch.zeros(1, device=get_current_device())
accum_correct = torch.zeros(1, device=get_current_device())
for batch in eval_dataloader:
batch = move_to_cuda(batch, torch.cuda.current_device())
outputs = model(**batch)
val_loss, logits = outputs[:2]
accum_loss += (val_loss / len(eval_dataloader))
if num_labels > 1:
preds = torch.argmax(logits, dim=1)
elif num_labels == 1:
preds = logits.squeeze()
labels = batch["labels"]
total_num += batch["labels"].shape[0]
accum_correct += (torch.sum(preds == labels))
dist.all_reduce(accum_loss)
dist.all_reduce(total_num)
dist.all_reduce(accum_correct)
avg_loss = "{:.4f}".format(accum_loss.item())
accuracy = "{:.4f}".format(accum_correct.item() / total_num.item())
if coordinator.is_master():
print(f"Evaluation result for epoch {epoch + 1}: \
average_loss={avg_loss}, \
accuracy={accuracy}.")
def main():
args = parse_demo_args()
# Launch ColossalAI
colossalai.launch_from_torch(config={}, seed=args.seed)
coordinator = DistCoordinator()
world_size = coordinator.world_size
# Manage loggers
disable_existing_loggers()
logger = get_dist_logger()
if coordinator.is_master():
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Prepare Dataset
image_processor = ViTImageProcessor.from_pretrained(args.model_name_or_path)
train_dataset = BeansDataset(image_processor, split='train')
eval_dataset = BeansDataset(image_processor, split='validation')
# Load pretrained ViT model
config = ViTConfig.from_pretrained(args.model_name_or_path)
config.num_labels = train_dataset.num_labels
config.id2label = {str(i): c for i, c in enumerate(train_dataset.label_names)}
config.label2id = {c: str(i) for i, c in enumerate(train_dataset.label_names)}
model = ViTForImageClassification.from_pretrained(args.model_name_or_path,
config=config,
ignore_mismatched_sizes=True)
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
# Set plugin
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
plugin = GeminiPlugin(device=get_current_device(),
placement_policy='cpu',
pin_memory=True,
strict_ddp_mode=True,
initial_scale=2**5)
elif args.plugin == 'low_level_zero':
plugin = LowLevelZeroPlugin(initial_scale=2**5)
logger.info(f"Set plugin as {args.plugin}", ranks=[0])
# Prepare dataloader
train_dataloader = plugin.prepare_dataloader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=beans_collator)
eval_dataloader = plugin.prepare_dataloader(eval_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
collate_fn=beans_collator)
# Set optimizer
optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size), weight_decay=args.weight_decay)
# Set lr scheduler
total_steps = len(train_dataloader) * args.num_epoch
num_warmup_steps = int(args.warmup_ratio * total_steps)
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
total_steps=(len(train_dataloader) * args.num_epoch),
warmup_steps=num_warmup_steps)
# Set booster
booster = Booster(plugin=plugin, **booster_kwargs)
model, optimizer, _, train_dataloader, lr_scheduler = booster.boost(model=model,
optimizer=optimizer,
dataloader=train_dataloader,
lr_scheduler=lr_scheduler)
# Finetuning
logger.info(f"Start finetuning", ranks=[0])
for epoch in range(args.num_epoch):
train_epoch(epoch, model, optimizer, lr_scheduler, train_dataloader, booster, coordinator)
evaluate_model(epoch, model, eval_dataloader, eval_dataset.num_labels, coordinator)
logger.info(f"Finish finetuning", ranks=[0])
# Save the finetuned model
booster.save_model(model, args.output_path)
logger.info(f"Saving model checkpoint to {args.output_path}", ranks=[0])
if __name__ == "__main__":
main()

11
examples/language/opt/opt_benchmark.py

@ -67,17 +67,8 @@ def main():
colo_memory_cap(args.mem_cap)
# Build OPT model
# Initialize the model under ColoInitContext if using GeminiPlugin
config = AutoConfig.from_pretrained(args.model_name_or_path)
if args.plugin == 'gemini':
shard_pg = ProcessGroup(tp_degree=world_size)
default_dist_spec = ShardSpec([-1], [world_size])
with ColoInitContext(device='cpu',
default_dist_spec=default_dist_spec,
default_pg=shard_pg):
model = OPTForCausalLM(config)
else:
model = OPTForCausalLM(config)
model = OPTForCausalLM(config=config)
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
# Enable gradient checkpointing

15
examples/language/opt/opt_train_demo.py

@ -74,17 +74,8 @@ def main():
transformers.utils.logging.set_verbosity_error()
# Build OPT model
# Initialize the model under ColoInitContext if using GeminiPlugin
config = AutoConfig.from_pretrained(args.model_name_or_path)
if args.plugin == 'gemini':
shard_pg = ProcessGroup(tp_degree=world_size)
default_dist_spec = ShardSpec([-1], [world_size])
with ColoInitContext(device='cpu',
default_dist_spec=default_dist_spec,
default_pg=shard_pg):
model = OPTForCausalLM(config)
else:
model = OPTForCausalLM(config)
model = OPTForCausalLM.from_pretrained(args.model_name_or_path, config=config)
logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0])
# Enable gradient checkpointing
@ -116,7 +107,9 @@ def main():
collate_fn=netflix_collator)
# Set optimizer
optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size))
optimizer = HybridAdam(model.parameters(),
lr=(args.learning_rate * world_size),
weight_decay=args.weight_decay)
# Set lr scheduler
total_steps = len(dataloader) * args.num_epoch

Loading…
Cancel
Save