mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add reshape handler v2 and fix some previous bug (#1683)
parent
6878e42248
commit
af718e83f2
@ -0,0 +1,35 @@
|
||||
import torch
|
||||
from .node_handler import NodeHandler
|
||||
from ..sharding_strategy import ShardingStrategy_V2, OperationDataType, OperationData, StrategiesVector
|
||||
from ..strategy import ReshapeGenerator, StrategyGenerator_V2
|
||||
from typing import List, Dict
|
||||
from .registry import operator_registry
|
||||
import operator
|
||||
|
||||
__all__ = ['ReshapeHandler']
|
||||
|
||||
|
||||
@operator_registry.register(torch.reshape)
|
||||
@operator_registry.register(torch.Tensor.permute)
|
||||
class ReshapeHandler(NodeHandler):
|
||||
"""
|
||||
A ReshapeHandler which deals with the sharding strategies for Reshape Op, such as torch.reshape.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator_V2]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(ReshapeGenerator(op_data_mapping, self.device_mesh, self.node.args[0]))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
physical_input_operand = OperationData(name=str(self.node.args[0]),
|
||||
type=OperationDataType.ARG,
|
||||
data=self.node.args[0]._meta_data)
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"input": physical_input_operand, "output": physical_output}
|
||||
|
||||
return mapping
|
@ -0,0 +1,100 @@
|
||||
import operator
|
||||
from functools import reduce
|
||||
from ..sharding_strategy import ShardingStrategy_V2, TrainCycleItem, MemoryCost
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from .strategy_generator import FollowingStrategyGenerator
|
||||
from typing import List
|
||||
import copy
|
||||
|
||||
__all__ = ['ReshapeGenerator']
|
||||
|
||||
|
||||
class ReshapeGenerator(FollowingStrategyGenerator):
|
||||
"""
|
||||
ReshapeGenerator which deals with the sharding strategies of Reshape Op, such as torch.Tensor.permute.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy_V2):
|
||||
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy_V2):
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {
|
||||
'input': self._compute_size_in_bytes(strategy, "input"),
|
||||
'output': self._compute_size_in_bytes(strategy, "output")
|
||||
}
|
||||
|
||||
backward_size_mapping = copy.deepcopy(forward_size_mapping)
|
||||
backward_size_mapping.pop("output")
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
# bwd_cost = input_grad
|
||||
bwd_activation_cost = sum([v for k, v in backward_size_mapping.items() if not self.is_param(k)])
|
||||
bwd_parameter_cost = sum([v for k, v in backward_size_mapping.items() if self.is_param(k)])
|
||||
bwd_mem_cost = MemoryCost(activation=bwd_activation_cost, parameter=bwd_parameter_cost)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost + bwd_activation_cost,
|
||||
parameter=fwd_parameter_cost + bwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def generate(self):
|
||||
strategy_list = []
|
||||
# For reshape function, to keep the computing correctness we keep the sharding
|
||||
# spec of input is fully replicated. In addition, we will keep the output in
|
||||
# replica status and let the successor node choose the way to resharding the
|
||||
# output node. Therefore, the different strategies of input node with same
|
||||
# output sharding spec will generate same strategy for reshape function.
|
||||
for index, strategy in enumerate(self.predecessor_node.strategies_vector):
|
||||
dim_partition_dict_mapping = {}
|
||||
communication_action_mapping = {}
|
||||
input_sharding_spec = strategy.output_sharding_specs[self.op_data["input"]]
|
||||
dim_partition_dict_for_input = input_sharding_spec.dim_partition_dict
|
||||
dim_partition_dict_for_output = {}
|
||||
if isinstance(self.op_data["output"].data, tuple):
|
||||
dim_partition_dict_for_output = [{} for _ in range(len(self.op_data["output"].data))]
|
||||
dim_partition_dict_mapping = {
|
||||
"input": dim_partition_dict_for_input,
|
||||
"output": dim_partition_dict_for_output,
|
||||
}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
# add index into name to pass the duplicated check
|
||||
# we keep same strategies with different name for node merging, and it will not increase the searching space,
|
||||
# because in solver, this node will be merged into other nodes, and solver will not create a new variable for this node.
|
||||
name = f'{sharding_spec_mapping["input"].sharding_sequence} -> FULLY REPLICATED_{index}'
|
||||
|
||||
total_mesh_dim_list = []
|
||||
for mesh_dim_list in dim_partition_dict_for_input.values():
|
||||
total_mesh_dim_list.extend(mesh_dim_list)
|
||||
# if there is only one sharding dimension, we should use the value instead of list as logical_process_axis.
|
||||
if len(total_mesh_dim_list) == 1:
|
||||
total_mesh_dim_list = total_mesh_dim_list[0]
|
||||
|
||||
input_comm_spec = self.get_communication_spec(
|
||||
sharding_spec=sharding_spec_mapping["input"],
|
||||
communication_pattern=CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
|
||||
logical_process_axis=total_mesh_dim_list)
|
||||
communication_action_mapping["input"] = input_comm_spec
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
strategy_list.append(strategy)
|
||||
|
||||
for strategy in strategy_list:
|
||||
self.update_communication_cost(strategy)
|
||||
self.update_compute_cost(strategy)
|
||||
self.update_memory_cost(strategy)
|
||||
|
||||
return strategy_list
|
@ -0,0 +1,81 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.conv_handler_v2 import ConvFunctionHandler
|
||||
from colossalai.auto_parallel.solver.op_handler.reshape_handler_v2 import ReshapeHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class ReshapeModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, input, other):
|
||||
conv_node = nn.functional.conv2d(input, other)
|
||||
reshape_node = conv_node.view(2, -1)
|
||||
return reshape_node
|
||||
|
||||
|
||||
def test_reshape_handler():
|
||||
model = ReshapeModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
|
||||
# %view : [#users=1] = call_method[target=view](args = (%conv2d, 2, -1), kwargs = {})
|
||||
# return view
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(4, 4, 64, 64).to('meta'),
|
||||
"other": torch.rand(4, 16, 3, 3).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
conv_mod_node = list(graph.nodes)[2]
|
||||
reshape_node = list(graph.nodes)[3]
|
||||
reshape_strategies_vector = StrategiesVector(reshape_node)
|
||||
conv_strategies_vector = StrategiesVector(conv_mod_node)
|
||||
|
||||
# build handler
|
||||
conv_handler = ConvFunctionHandler(node=conv_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=conv_strategies_vector)
|
||||
conv_handler.register_strategy()
|
||||
setattr(conv_mod_node, 'strategies_vector', conv_strategies_vector)
|
||||
reshape_handler = ReshapeHandler(node=reshape_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=reshape_strategies_vector)
|
||||
|
||||
reshape_handler.register_strategy()
|
||||
|
||||
# check operation data mapping
|
||||
mapping = reshape_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "conv2d"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 4, 62, 62])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 4, 62, 62])
|
||||
|
||||
assert mapping['output'].name == "view"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([2, 30752])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
||||
assert len(reshape_strategies_vector) == len(conv_strategies_vector)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_reshape_handler()
|
Loading…
Reference in new issue