[shardformer] bert support sequence parallel. (#4455)

* [shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

* [shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

[shardformer] bert support sequence parallel

* [shardformer] bert support sequence parallel
pull/4484/head
flybird11111 2023-08-18 18:04:55 +08:00 committed by GitHub
parent 0ecd71e041
commit a27e0bb494
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 234 additions and 42 deletions

View File

@ -154,7 +154,7 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap):
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap=True):
ctx.save_for_backward(input_, weight)
ctx.use_bias = bias is not None
ctx.process_group = process_group
@ -217,9 +217,7 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
# do all gather in default stream
input_ = input_.contiguous()
world_size = dist.get_world_size(process_group)
rank = dist.get_rank(process_group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
gather_handle = dist.all_gather(tensor_list, input_, group=process_group, async_op=True)
# calculate gradient in calculate_stream
@ -469,9 +467,7 @@ def _gather(input_, dim=-1, process_group=None):
# all gather
input_ = input_.contiguous()
rank = dist.get_rank(process_group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=process_group)
# concat

View File

@ -1,6 +1,6 @@
import math
import warnings
from typing import Dict, List, Optional, Tuple
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
@ -29,6 +29,8 @@ from transformers.models.bert.modeling_bert import (
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
class BertPipelineForwards:
@ -56,6 +58,7 @@ class BertPipelineForwards:
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None, # this is from the previous stage
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
# TODO(jianghai): add explaination of the output here.
r"""
@ -177,6 +180,14 @@ class BertPipelineForwards:
start_idx, end_idx = stage_index[0], stage_index[1]
# layer_outputs
layer_outputs = hidden_states if hidden_states is not None else None
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
if shard_config is not None and shard_config.enable_sequence_parallelism:
hidden_states = split_forward_gather_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
for idx, encoder_layer in enumerate(self.encoder.layer[start_idx:end_idx], start=start_idx):
if stage_manager.is_first_stage() and idx == 0:
encoder_attention_mask = encoder_extended_attention_mask
@ -223,11 +234,17 @@ class BertPipelineForwards:
all_cross_attentions = all_cross_attentions + \
(layer_outputs[2],)
# When sequence parallelism done, gather the output tensor in forward and split it in backward
if shard_config is not None and shard_config.enable_sequence_parallelism:
hidden_states = gather_forward_split_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# end of a stage loop
sequence_output = layer_outputs[0] if layer_outputs is not None else None
sequence_output = hidden_states if hidden_states is not None else None
if stage_manager.is_last_stage():
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
@ -268,6 +285,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.FloatTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
logger = logging.get_logger(__name__)
@ -294,6 +312,7 @@ class BertPipelineForwards:
stage_manager=stage_manager,
hidden_states=hidden_states if hidden_states is not None else None,
stage_index=stage_index,
shard_config=shard_config,
)
past_key_values = None
all_hidden_states = None
@ -350,6 +369,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.FloatTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
@ -404,7 +424,8 @@ class BertPipelineForwards:
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states if hidden_states is not None else None,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
past_key_values = None
all_hidden_states = None
all_self_attentions = None
@ -457,6 +478,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.Tensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -491,6 +513,7 @@ class BertPipelineForwards:
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=shard_config,
)
if stage_manager.is_last_stage():
@ -532,6 +555,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.Tensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
**kwargs,
):
# -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
@ -594,7 +618,8 @@ class BertPipelineForwards:
return_dict=return_dict,
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
if stage_manager.is_last_stage():
pooled_output = outputs[1]
@ -636,6 +661,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.Tensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
@ -666,7 +692,8 @@ class BertPipelineForwards:
return_dict=return_dict,
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
if stage_manager.is_last_stage():
pooled_output = outputs[1]
@ -726,6 +753,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.Tensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@ -742,21 +770,20 @@ class BertPipelineForwards:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
outputs = BertPipelineForwards.bert_model_forward(
self.bert,
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index,
)
outputs = BertPipelineForwards.bert_model_forward(self.bert,
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=shard_config)
if stage_manager.is_last_stage():
sequence_output = outputs[0]
@ -799,6 +826,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.Tensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
@ -843,6 +871,7 @@ class BertPipelineForwards:
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=shard_config,
)
if stage_manager.is_last_stage():
pooled_output = outputs[1]
@ -886,6 +915,7 @@ class BertPipelineForwards:
hidden_states: Optional[torch.Tensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None,
):
# NOTE: the arg start_position and end_position are used only for the last stage
r"""
@ -909,21 +939,20 @@ class BertPipelineForwards:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
outputs = BertPipelineForwards.bert_model_forward(
self.bert,
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index,
)
outputs = BertPipelineForwards.bert_model_forward(self.bert,
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
hidden_states=hidden_states,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=shard_config)
if stage_manager.is_last_stage():
sequence_output = outputs[0]
@ -1101,3 +1130,150 @@ def get_jit_fused_bert_output_forward():
return hidden_states
return forward
def bert_sequence_parallel_forward_fn(shard_config: ShardConfig):
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
embedding_output = split_forward_gather_backward(embedding_output,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
# When sequence parallelism done, gather the output tensor in forward and split it in backward
sequence_output = gather_forward_split_backward(sequence_output,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
return forward

View File

@ -10,6 +10,7 @@ import colossalai.shardformer.layer as col_nn
from .._utils import getattr_, setattr_
from ..modeling.bert import (
BertPipelineForwards,
bert_sequence_parallel_forward_fn,
get_bert_flash_attention_forward,
get_jit_fused_bert_output_forward,
get_jit_fused_bert_self_output_forward,
@ -47,13 +48,14 @@ class BertPolicy(Policy):
from transformers.models.bert.modeling_bert import (
BertEmbeddings,
BertLayer,
BertModel,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
policy = {}
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
if self.shard_config.enable_tensor_parallelism:
policy[BertLayer] = ModulePolicyDescription(attribute_replacement={
"attention.self.all_head_size":
@ -69,14 +71,17 @@ class BertPolicy(Policy):
SubModuleReplacementDescription(
suffix="attention.self.query",
target_module=col_nn.Linear1D_Col,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="attention.self.key",
target_module=col_nn.Linear1D_Col,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="attention.self.value",
target_module=col_nn.Linear1D_Col,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="attention.self.dropout",
@ -85,6 +90,7 @@ class BertPolicy(Policy):
SubModuleReplacementDescription(
suffix="attention.output.dense",
target_module=col_nn.Linear1D_Row,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="attention.output.dropout",
@ -93,10 +99,12 @@ class BertPolicy(Policy):
SubModuleReplacementDescription(
suffix="intermediate.dense",
target_module=col_nn.Linear1D_Col,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="output.dense",
target_module=col_nn.Linear1D_Row,
kwargs={"seq_parallel": use_sequence_parallel},
),
SubModuleReplacementDescription(
suffix="output.dropout",
@ -115,6 +123,12 @@ class BertPolicy(Policy):
)
])
if use_sequence_parallel:
self.append_or_create_method_replacement(
description={'forward': bert_sequence_parallel_forward_fn(self.shard_config)},
policy=policy,
target_key=BertModel)
# optimization configuration
if self.shard_config.enable_fused_normalization:
# Handle bert layer
@ -205,7 +219,13 @@ class BertPolicy(Policy):
layers_per_stage = Policy.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
method_replacement = {
'forward':
partial(new_forward,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=self.shard_config)
}
self.append_or_create_method_replacement(description=method_replacement,
policy=policy,
target_key=model_cls)