mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] bloom support sequence parallel (#4465)
[shardformer] bloom support sequence parallelpull/4484/head
parent
7c8be77081
commit
0ecd71e041
|
@ -23,6 +23,10 @@ from transformers.models.bloom.modeling_bloom import (
|
|||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
|
||||
from colossalai.shardformer.shard import ShardConfig
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def build_bloom_alibi_tensor_fn(process_group: ProcessGroup) -> torch.Tensor:
|
||||
|
@ -111,6 +115,7 @@ class BloomPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
**deprecated_arguments,
|
||||
) -> Union[Tuple[torch.Tensor, ...], 'BaseModelOutputWithPastAndCrossAttentions']:
|
||||
|
||||
|
@ -205,6 +210,13 @@ class BloomPipelineForwards:
|
|||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
# split the input tensor along sequence dimension
|
||||
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
||||
if shard_config.enable_sequence_parallelism:
|
||||
hidden_states = split_forward_gather_backward(hidden_states,
|
||||
dim=1,
|
||||
process_group=shard_config.tensor_parallel_process_group)
|
||||
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
for i, (block, layer_past) in enumerate(zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]),
|
||||
start=start_idx):
|
||||
|
@ -248,6 +260,12 @@ class BloomPipelineForwards:
|
|||
all_self_attentions = all_self_attentions + \
|
||||
(outputs[2 if use_cache else 1],)
|
||||
|
||||
# When sequence parallelism done, gather the output tensor in forward and split it in backward
|
||||
if shard_config.enable_sequence_parallelism:
|
||||
hidden_states = gather_forward_split_backward(hidden_states,
|
||||
dim=1,
|
||||
process_group=shard_config.tensor_parallel_process_group)
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
@ -287,6 +305,7 @@ class BloomPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
**deprecated_arguments):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
|
@ -327,7 +346,8 @@ class BloomPipelineForwards:
|
|||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
stage_index=stage_index,
|
||||
shard_config=shard_config)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
|
@ -380,6 +400,7 @@ class BloomPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
**deprecated_arguments,
|
||||
):
|
||||
r"""
|
||||
|
@ -424,6 +445,7 @@ class BloomPipelineForwards:
|
|||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
shard_config=shard_config,
|
||||
)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
|
@ -503,6 +525,7 @@ class BloomPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
**deprecated_arguments,
|
||||
):
|
||||
r"""
|
||||
|
@ -547,6 +570,7 @@ class BloomPipelineForwards:
|
|||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
shard_config=shard_config,
|
||||
)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
|
@ -597,6 +621,7 @@ class BloomPipelineForwards:
|
|||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
shard_config: ShardConfig = None,
|
||||
):
|
||||
r"""
|
||||
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
|
@ -632,6 +657,7 @@ class BloomPipelineForwards:
|
|||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
shard_config=shard_config,
|
||||
)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
|
@ -700,8 +726,7 @@ def get_bloom_flash_attention_forward(enabel_jit_fused=False):
|
|||
|
||||
fused_qkv = self.query_key_value(hidden_states)
|
||||
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
||||
batch_size, tgt_len, _ = hidden_states.size()
|
||||
assert tgt_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
|
||||
batch_size, tgt_len, _ = query_layer.size()
|
||||
|
||||
_, kv_length, _, _ = key_layer.size()
|
||||
|
||||
|
@ -896,3 +921,156 @@ def get_jit_fused_bloom_gelu_forward():
|
|||
return self.bloom_gelu_forward(x, bias)
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
||||
|
||||
from transformers import BloomModel
|
||||
|
||||
def forward(
|
||||
self: BloomModel,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
**deprecated_arguments,
|
||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape batch_size x num_heads x N x N
|
||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
# Compute alibi tensor: check build_alibi_tensor documentation
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
if past_key_values[0] is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||||
|
||||
causal_mask = self._prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
# split the input tensor along sequence dimension
|
||||
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
||||
hidden_states = split_forward_gather_backward(hidden_states,
|
||||
dim=1,
|
||||
process_group=shard_config.tensor_parallel_process_group)
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
alibi,
|
||||
causal_mask,
|
||||
layer_past,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
alibi=alibi,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
# When sequence parallelism done, gather the output tensor in forward and split it in backward
|
||||
hidden_states = gather_forward_split_backward(hidden_states,
|
||||
dim=1,
|
||||
process_group=shard_config.tensor_parallel_process_group)
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
return forward
|
||||
|
|
|
@ -12,6 +12,7 @@ from ..modeling.bloom import (
|
|||
BloomPipelineForwards,
|
||||
build_bloom_alibi_tensor_fn,
|
||||
get_bloom_flash_attention_forward,
|
||||
get_bloom_sequence_parallel_forward_fn,
|
||||
get_jit_fused_bloom_attention_forward,
|
||||
get_jit_fused_bloom_gelu_forward,
|
||||
get_jit_fused_bloom_mlp_forward,
|
||||
|
@ -43,6 +44,7 @@ class BloomPolicy(Policy):
|
|||
|
||||
policy = {}
|
||||
|
||||
use_sequence_parallel = self.shard_config.enable_sequence_parallelism
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
policy[BloomBlock] = ModulePolicyDescription(attribute_replacement={
|
||||
"self_attention.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
||||
|
@ -53,11 +55,11 @@ class BloomPolicy(Policy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.query_key_value",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
kwargs={'seq_parallel': use_sequence_parallel}),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.dense",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
kwargs={'seq_parallel': use_sequence_parallel}),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="self_attention.attention_dropout",
|
||||
target_module=col_nn.DropoutForParallelInput,
|
||||
|
@ -65,11 +67,11 @@ class BloomPolicy(Policy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="mlp.dense_h_to_4h",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
),
|
||||
kwargs={'seq_parallel': use_sequence_parallel}),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.dense_4h_to_h",
|
||||
target_module=col_nn.Linear1D_Row,
|
||||
),
|
||||
kwargs={'seq_parallel': use_sequence_parallel}),
|
||||
])
|
||||
|
||||
policy[BloomModel] = ModulePolicyDescription(
|
||||
|
@ -116,6 +118,12 @@ class BloomPolicy(Policy):
|
|||
policy=policy,
|
||||
target_key=BloomBlock)
|
||||
|
||||
if use_sequence_parallel:
|
||||
self.append_or_create_method_replacement(
|
||||
description={'forward': get_bloom_sequence_parallel_forward_fn(self.shard_config)},
|
||||
policy=policy,
|
||||
target_key=BloomModel)
|
||||
|
||||
if self.shard_config.enable_flash_attention:
|
||||
policy[BloomAttention] = ModulePolicyDescription(method_replacement={
|
||||
'forward': get_bloom_flash_attention_forward(),
|
||||
|
@ -154,7 +162,13 @@ class BloomPolicy(Policy):
|
|||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||||
method_replacement = {
|
||||
'forward':
|
||||
partial(new_forward,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index,
|
||||
shard_config=self.shard_config)
|
||||
}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=model_cls)
|
||||
|
|
|
@ -58,3 +58,4 @@ class ShardConfig:
|
|||
self.enable_fused_normalization = True
|
||||
self.enable_flash_attention = True
|
||||
self.enable_jit_fused = True
|
||||
self.enable_sequence_parallelism = True
|
||||
|
|
Loading…
Reference in New Issue