[shardformer/sequence parallel] support gpt2 seq parallel with pp/dp/tp (#4460)

* support gpt2 seq parallel with pp/dp/tp

* fix a bug when waiting for stream done

* delete unused gpt2_seq file
pull/4455/head
Bin Jia 2023-08-18 11:21:53 +08:00 committed by GitHub
parent a78daf6180
commit 7c8be77081
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 268 additions and 240 deletions

View File

@ -235,6 +235,10 @@ class HybridParallelPlugin(PipelinePluginBase):
assert dist.get_world_size() % (
tp_size * pp_size
) == 0, f'world size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}'
if enable_sequence_parallelism:
assert tp_size > 1, 'Sequence parallelism must be enabled when using tensor parallelism'
# TODO(ver217): support zero
assert zero_stage == 0, 'zero is not support yet'
self.tp_size = tp_size

View File

@ -239,6 +239,7 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
output = torch.empty(input_.shape, dtype=input_.dtype, device=input_.device).contiguous()
torch.cuda.current_stream().wait_stream(calculate_stream)
gather_handle.wait()
reducescatter_handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True)
with torch.cuda.stream(calculate_stream):
@ -249,6 +250,7 @@ class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
grad_weight = grad_output.t().matmul(input_parallel)
torch.cuda.current_stream().wait_stream(calculate_stream)
reducescatter_handle.wait()
return output, grad_weight, grad_bias, None, None, None, None

View File

@ -21,6 +21,8 @@ from transformers.models.gpt2.modeling_gpt2 import (
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.shard import ShardConfig
class GPT2PipelineForwards:
@ -47,7 +49,8 @@ class GPT2PipelineForwards:
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None) -> Union[Dict, Tuple, BaseModelOutputWithPastAndCrossAttentions]:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None) -> Union[Dict, Tuple, BaseModelOutputWithPastAndCrossAttentions]:
# This function is modified on the basis of transformers.models.gpt2.modeling_gpt2.GPT2Model.forward.
# Please refer to original code of transformers for more details.
@ -159,6 +162,13 @@ class GPT2PipelineForwards:
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
if shard_config.enable_sequence_parallelism:
hidden_states = split_forward_gather_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
# Going through held blocks.
start_idx, end_idx = stage_index[0], stage_index[1]
for i in range(start_idx, end_idx):
@ -212,6 +222,12 @@ class GPT2PipelineForwards:
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# When sequence parallelism done, gather the output tensor in forward and split it in backward
if shard_config.enable_sequence_parallelism:
hidden_states = gather_forward_split_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
if stage_manager.is_last_stage():
hidden_states = self.ln_f(hidden_states)
@ -257,7 +273,8 @@ class GPT2PipelineForwards:
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None) -> Union[Dict, Tuple, CausalLMOutputWithCrossAttentions]:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None) -> Union[Dict, Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
@ -285,7 +302,8 @@ class GPT2PipelineForwards:
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
# If not at the last stage, return hidden_states as in GPT2Model
if not stage_manager.is_last_stage():
@ -335,7 +353,8 @@ class GPT2PipelineForwards:
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None) -> Union[Dict, Tuple, GPT2DoubleHeadsModelOutput]:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None) -> Union[Dict, Tuple, GPT2DoubleHeadsModelOutput]:
r"""
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
@ -367,7 +386,8 @@ class GPT2PipelineForwards:
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
# If not at the last stage, return hidden_states as in GPT2Model
if not stage_manager.is_last_stage():
@ -421,7 +441,8 @@ class GPT2PipelineForwards:
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None) -> Union[Dict, Tuple, QuestionAnsweringModelOutput]:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None) -> Union[Dict, Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
@ -449,7 +470,8 @@ class GPT2PipelineForwards:
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
# If not at the last stage, return hidden_states as in GPT2Model
if not stage_manager.is_last_stage():
@ -508,7 +530,8 @@ class GPT2PipelineForwards:
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None) -> Union[Dict, Tuple, TokenClassifierOutput]:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None) -> Union[Dict, Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
@ -534,7 +557,8 @@ class GPT2PipelineForwards:
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
# If not at the last stage, return hidden_states as in GPT2Model
if not stage_manager.is_last_stage():
@ -578,7 +602,8 @@ class GPT2PipelineForwards:
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None) -> Union[Dict, Tuple, SequenceClassifierOutputWithPast]:
stage_index: Optional[List[int]] = None,
shard_config: ShardConfig = None) -> Union[Dict, Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
@ -613,7 +638,8 @@ class GPT2PipelineForwards:
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index)
stage_index=stage_index,
shard_config=shard_config)
# If not at the last stage, return hidden_states as in GPT2Model
if not stage_manager.is_last_stage():
@ -696,7 +722,6 @@ def get_gpt2_flash_attention_forward():
output_attentions: Optional[bool] = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
_, tgt_len, _ = hidden_states.size()
assert tgt_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
@ -753,3 +778,210 @@ def get_gpt2_flash_attention_forward():
return outputs
return forward
def gpt2_sequence_parallel_forward_fn(shard_config: ShardConfig):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
hidden_states = split_forward_gather_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
# When sequence parallelism done, gather the output tensor in forward and split it in backward
hidden_states = gather_forward_split_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
return forward

View File

@ -1,222 +0,0 @@
# this code is modified from transformers.models.gpt2.modeling_gpt2
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/gpt2/modeling_gpt2.py#L670
from typing import Optional, Tuple, Union
import torch
import torch.distributed as dist
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from transformers.utils import logging
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.shard import ShardConfig
logger = logging.get_logger(__name__)
# TODO: put all contents in `gpt2.py` and make it compatible with pipeline
def gpt2_sequence_parallel_forward_fn(shard_config: ShardConfig):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
hidden_states = split_forward_gather_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
# When sequence parallelism done, gather the output tensor in forward and split it in backward
hidden_states = gather_forward_split_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
return forward

View File

@ -6,8 +6,7 @@ from torch import Tensor, nn
import colossalai.shardformer.layer as col_nn
from .._utils import getattr_, setattr_
from ..modeling.gpt2 import GPT2PipelineForwards, get_gpt2_flash_attention_forward
from ..modeling.gpt2_seq import gpt2_sequence_parallel_forward_fn
from ..modeling.gpt2 import GPT2PipelineForwards, get_gpt2_flash_attention_forward, gpt2_sequence_parallel_forward_fn
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = [
@ -50,8 +49,6 @@ class GPT2Policy(Policy):
target_module=col_nn.DropoutForParallelInput,
),
])
if self.shard_config.enable_sequence_parallelism:
policy[GPT2Model].method_replacement = {"forward": gpt2_sequence_parallel_forward_fn(self.shard_config)}
policy[GPT2Block] = ModulePolicyDescription(attribute_replacement={
"attn.embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
@ -126,6 +123,7 @@ class GPT2Policy(Policy):
})
if self.shard_config.enable_sequence_parallelism:
policy[GPT2Model].method_replacement = {"forward": gpt2_sequence_parallel_forward_fn(self.shard_config)}
suffix_list = ["attn.c_attn", "attn.c_proj", "mlp.c_fc", "mlp.c_proj"]
self.append_seq_parallel_to_policy(suffix_list=suffix_list, module_policy_description=policy[GPT2Block])
@ -169,7 +167,13 @@ class GPT2Policy(Policy):
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
method_replacement = {
'forward':
partial(new_forward,
stage_manager=stage_manager,
stage_index=stage_index,
shard_config=self.shard_config)
}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)

View File

@ -105,10 +105,18 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 2,
'num_microbatches': 4,
'enable_all_optimization': True,
'use_lazy_init': True,
'enable_sequence_parallelism': True,
'precision': 'fp32',
}, {
'tp_size': 4,
'pp_size': 1,
'enable_all_optimization': False,
'enable_all_optimization': True,
'use_lazy_init': True,
'enable_sequence_parallelism': True,
'precision': 'fp32',