|
|
|
@ -14,7 +14,6 @@ class EvictionStrategy(Enum):
|
|
|
|
|
DATASET = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CachedParamMgr(torch.nn.Module):
|
|
|
|
|
"""
|
|
|
|
|
Manage Embedding Weights on CPU and CUDA memory uses a software cache.
|
|
|
|
@ -64,8 +63,7 @@ class CachedParamMgr(torch.nn.Module):
|
|
|
|
|
# cache_row_idx -> frequency, freq of the cache rows.
|
|
|
|
|
# classic lfu cache. evict the minimal freq value row in cuda cache.
|
|
|
|
|
self.register_buffer("freq_cnter",
|
|
|
|
|
torch.empty(self.cuda_row_num,
|
|
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
|
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(),
|
|
|
|
|
dtype=torch.long).fill_(sys.maxsize),
|
|
|
|
|
persistent=False)
|
|
|
|
|
|
|
|
|
@ -163,8 +161,12 @@ class CachedParamMgr(torch.nn.Module):
|
|
|
|
|
reorder the weight according to ids' frequency in dataset before training.
|
|
|
|
|
Execute only once before training, also known as warmup phase.
|
|
|
|
|
|
|
|
|
|
:NOTE If you would like to use the DATASET as the eviction strategy, you must call this function.
|
|
|
|
|
:NOTE If you are use the LFU as the eviction strategy, you can skip this function.
|
|
|
|
|
Note:
|
|
|
|
|
If you would like to use the DATASET as the eviction strategy, you must call this function.
|
|
|
|
|
|
|
|
|
|
Note:
|
|
|
|
|
If you are use the LFU as the eviction strategy, you can skip this function. If you still use this function. It will initialize
|
|
|
|
|
The frequency in LFU cache using the dataset statistics.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
ids_freq_mapping (List[int]): a list, whose offset is id number, value is freq. if None then not reorder the cpu weight.
|
|
|
|
@ -182,24 +184,31 @@ class CachedParamMgr(torch.nn.Module):
|
|
|
|
|
with Timer() as timer:
|
|
|
|
|
# extract rows from cpu weight
|
|
|
|
|
preload_row_ids = torch.arange(preload_row_num)
|
|
|
|
|
preload_slot_ids = preload_row_ids.cuda()
|
|
|
|
|
preload_cuda_row_idxs = preload_row_ids.cuda()
|
|
|
|
|
|
|
|
|
|
if self.buffer_size > 0:
|
|
|
|
|
self.limit_buff_index_copyer.index_copy(0,
|
|
|
|
|
src_index=preload_row_ids,
|
|
|
|
|
tgt_index=preload_slot_ids,
|
|
|
|
|
tgt_index=preload_cuda_row_idxs,
|
|
|
|
|
src=self.weight.view(self.num_embeddings, -1),
|
|
|
|
|
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
|
|
|
|
|
else:
|
|
|
|
|
preload_rows = self.weight.view(self.num_embeddings, -1).index_select(0, preload_row_ids).cuda()
|
|
|
|
|
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_slot_ids, preload_rows)
|
|
|
|
|
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_cuda_row_idxs,
|
|
|
|
|
preload_rows)
|
|
|
|
|
|
|
|
|
|
# update auxiliary info
|
|
|
|
|
slot_offsets = preload_slot_ids
|
|
|
|
|
self.cached_idx_map[preload_slot_ids] = preload_slot_ids
|
|
|
|
|
slot_offsets = preload_cuda_row_idxs
|
|
|
|
|
self.cached_idx_map[preload_cuda_row_idxs] = preload_cuda_row_idxs
|
|
|
|
|
|
|
|
|
|
if self._evict_strategy == EvictionStrategy.LFU:
|
|
|
|
|
self.freq_cnter.index_fill_(0,preload_slot_ids,0)
|
|
|
|
|
self.inverted_cached_idx[preload_slot_ids] = slot_offsets
|
|
|
|
|
# if the ids_freq_mapping is not None, we initialize the embedding row's freq value in LFU as its freq in dataset.
|
|
|
|
|
if ids_freq_mapping is None:
|
|
|
|
|
self.freq_cnter.index_fill_(0, preload_cuda_row_idxs, 0)
|
|
|
|
|
else:
|
|
|
|
|
self.freq_cnter.index_fill_(0, preload_cuda_row_idxs, self.idx_map[preload_cuda_row_idxs])
|
|
|
|
|
|
|
|
|
|
self.inverted_cached_idx[preload_cuda_row_idxs] = slot_offsets
|
|
|
|
|
self._cuda_available_row_num -= preload_row_num
|
|
|
|
|
print(f'Cache warmup finished cost {timer.elapsed} sec.')
|
|
|
|
|
|
|
|
|
|