mirror of https://github.com/hpcaitech/ColossalAI
[chatgpt]add reward model code for deberta (#3199)
Co-authored-by: Yuanchen Xu <yuanchen.xu00@gmail.com>pull/3209/head
parent
1e1b9d2fea
commit
9998d5ef64
|
@ -0,0 +1,4 @@
|
|||
from .deberta_critic import DebertaCritic
|
||||
from .deberta_rm import DebertaRM
|
||||
|
||||
__all__ = ['DebertaCritic', 'DebertaRM']
|
|
@ -0,0 +1,36 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch.nn as nn
|
||||
from transformers import DebertaV2Config, DebertaV2Model
|
||||
|
||||
from ..base import Critic
|
||||
|
||||
|
||||
class DebertaCritic(Critic):
|
||||
"""
|
||||
Deberta Critic model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (DebertaV2Config): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): Rank of the LO-RA decomposition.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[DebertaV2Config] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none') -> None:
|
||||
if pretrained is not None:
|
||||
model = DebertaV2Model.from_pretrained(pretrained)
|
||||
elif config is not None:
|
||||
model = DebertaV2Model(config)
|
||||
else:
|
||||
model = DebertaV2Model(DebertaV2Config())
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
value_head = nn.Linear(model.config.hidden_size, 1)
|
||||
super().__init__(model, value_head, lora_rank, lora_train_bias)
|
|
@ -0,0 +1,37 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch.nn as nn
|
||||
from transformers import DebertaV2Config, DebertaV2Model
|
||||
|
||||
from ..base import RewardModel
|
||||
|
||||
|
||||
class DebertaRM(RewardModel):
|
||||
"""
|
||||
Deberta Reward model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (DebertaV2Config): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): Rank of the LO-RA decomposition.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: str = None,
|
||||
config: Optional[DebertaV2Config] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none') -> None:
|
||||
if pretrained is not None:
|
||||
model = DebertaV2Model.from_pretrained(pretrained)
|
||||
elif config is not None:
|
||||
model = DebertaV2Model(config)
|
||||
else:
|
||||
model = DebertaV2Model(DebertaV2Config())
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
value_head = nn.Linear(model.config.hidden_size, 1)
|
||||
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
|
||||
super().__init__(model, value_head, lora_rank, lora_train_bias)
|
|
@ -1 +1,2 @@
|
|||
pandas>=1.4.1
|
||||
sentencepiece
|
||||
|
|
|
@ -88,4 +88,10 @@ torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
|
|||
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
|
||||
--test True --lora_rank 4
|
||||
|
||||
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
|
||||
--pretrain 'microsoft/deberta-v3-large' --model 'deberta' \
|
||||
--strategy colossalai_zero2 --loss_fn 'log_sig'\
|
||||
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
|
||||
--test True --lora_rank 4
|
||||
|
||||
rm -rf ${BASE}/rm_ckpt.pt
|
||||
|
|
|
@ -8,12 +8,13 @@ from chatgpt.models.base import RewardModel
|
|||
from chatgpt.models.bloom import BLOOMRM
|
||||
from chatgpt.models.gpt import GPTRM
|
||||
from chatgpt.models.opt import OPTRM
|
||||
from chatgpt.models.deberta import DebertaRM
|
||||
from chatgpt.trainer import RewardModelTrainer
|
||||
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
||||
from datasets import load_dataset
|
||||
from random import randint
|
||||
from torch.optim import Adam
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer
|
||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
|
@ -39,6 +40,8 @@ def train(args):
|
|||
model = OPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
elif args.model == 'gpt2':
|
||||
model = GPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
elif args.model == 'deberta':
|
||||
model = DebertaRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -54,6 +57,8 @@ def train(args):
|
|||
tokenizer = BloomTokenizerFast.from_pretrained('bigscience/bloom-560m')
|
||||
elif args.model == 'opt':
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
elif args.model == 'deberta':
|
||||
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-large')
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
max_len = args.max_len
|
||||
|
@ -119,7 +124,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--strategy',
|
||||
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
||||
default='naive')
|
||||
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt'], default='bloom')
|
||||
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'deberta'], default='bloom')
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--model_path', type=str, default=None)
|
||||
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
set_n_least_used_CUDA_VISIBLE_DEVICES 1
|
||||
|
||||
python train_reward_model.py --pretrain '/home/lczht/data2/bloom-560m' \
|
||||
--model 'bloom' \
|
||||
python train_reward_model.py --pretrain 'microsoft/deberta-v3-large' \
|
||||
--model 'deberta' \
|
||||
--strategy naive \
|
||||
--loss_fn 'log_exp'\
|
||||
--save_path 'rmstatic.pt' \
|
||||
|
|
Loading…
Reference in New Issue