mirror of https://github.com/hpcaitech/ColossalAI
[chatgpt]support llama (#3070)
parent
e3ad88fb48
commit
1e1b9d2fea
|
@ -0,0 +1,5 @@
|
|||
from .llama_actor import LlamaActor
|
||||
from .llama_critic import LlamaCritic
|
||||
from .llama_rm import LlamaRM
|
||||
|
||||
__all__ = ['LlamaActor', 'LlamaCritic', 'LlamaRM']
|
|
@ -0,0 +1,38 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM
|
||||
|
||||
from ..base import Actor
|
||||
|
||||
|
||||
class LlamaActor(Actor):
|
||||
"""
|
||||
Llama Actor model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (LlamaConfig): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): LoRA rank.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[LlamaConfig] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none') -> None:
|
||||
|
||||
if pretrained is not None:
|
||||
model = LlamaForCausalLM.from_pretrained(pretrained)
|
||||
elif config is not None:
|
||||
model = LlamaForCausalLM(config)
|
||||
else:
|
||||
model = LlamaForCausalLM(LlamaConfig())
|
||||
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
super().__init__(model, lora_rank, lora_train_bias)
|
|
@ -0,0 +1,42 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM
|
||||
|
||||
from ..base import Critic
|
||||
|
||||
|
||||
class LlamaCritic(Critic):
|
||||
"""
|
||||
Llama Critic model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (LlamaConfig): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): LoRA rank.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[LlamaConfig] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none',
|
||||
**kwargs) -> None:
|
||||
|
||||
if pretrained is not None:
|
||||
model = LlamaForCausalLM.from_pretrained(pretrained)
|
||||
elif config is not None:
|
||||
model = LlamaForCausalLM(config)
|
||||
else:
|
||||
model = LlamaForCausalLM(LlamaConfig())
|
||||
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
value_head = nn.Linear(model.config.hidden_size, 1)
|
||||
|
||||
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)
|
|
@ -0,0 +1,41 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch.nn as nn
|
||||
from transformers import LlamaConfig, LlamaForCausalLM
|
||||
|
||||
from ..base import RewardModel
|
||||
|
||||
|
||||
class LlamaRM(RewardModel):
|
||||
"""
|
||||
Llama Reward model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (LlamaConfig): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): LoRA rank.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[LlamaConfig] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none') -> None:
|
||||
|
||||
if pretrained is not None:
|
||||
model = LlamaForCausalLM.from_pretrained(pretrained)
|
||||
elif config is not None:
|
||||
model = LlamaForCausalLM(config)
|
||||
else:
|
||||
model = LlamaForCausalLM(LlamaConfig())
|
||||
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
value_head = nn.Linear(model.config.hidden_size, 1)
|
||||
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
|
||||
|
||||
super().__init__(model, lora_rank, lora_train_bias)
|
Loading…
Reference in New Issue