Browse Source

[Gemini] remove eval in gemini unittests! (#2092)

pull/2096/head^2
Jiarui Fang 2 years ago committed by GitHub
parent
commit
978242326a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 23
      tests/test_gemini/update/test_fwd_bwd.py

23
tests/test_gemini/update/test_fwd_bwd.py

@ -34,18 +34,25 @@ def check_grad(model: ZeroDDP, torch_model: torch.nn.Module):
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5)
@parameterize('init_device', [get_current_device()])
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('keep_gather', [False, True])
@parameterize('model_name', ['gpt2', 'bert', 'albert'])
@parameterize('use_grad_checkpoint', [False, True])
def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False):
set_seed(42)
def exam_gpt_fwd_bwd(placement_policy,
keep_gather,
model_name: str,
use_grad_checkpoint: bool = False,
init_device=get_current_device()):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
with ColoInitContext(device=get_current_device()):
set_seed(42)
with ColoInitContext(device=init_device):
model = model_builder(use_grad_checkpoint)
set_seed(42)
torch_model = model_builder(use_grad_checkpoint).cuda()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p.data)
@ -66,9 +73,6 @@ def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_ch
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
model.eval()
torch_model.eval()
set_seed(pg.dp_local_rank())
for i, (input_ids, label) in enumerate(train_dataloader):
# you can only test a single fwd + bwd.
@ -76,7 +80,14 @@ def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_ch
if i > 0:
break
input_ids, label = input_ids.cuda(), label.cuda()
torch_optim.zero_grad()
zero_optim.zero_grad()
# set random seed is same as torch_model.eval()
set_seed(42)
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
set_seed(42)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert torch.equal(torch_loss, loss)

Loading…
Cancel
Save