|
|
|
@ -34,18 +34,25 @@ def check_grad(model: ZeroDDP, torch_model: torch.nn.Module):
|
|
|
|
|
assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize('init_device', [get_current_device()]) |
|
|
|
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) |
|
|
|
|
@parameterize('keep_gather', [False, True]) |
|
|
|
|
@parameterize('model_name', ['gpt2', 'bert', 'albert']) |
|
|
|
|
@parameterize('use_grad_checkpoint', [False, True]) |
|
|
|
|
def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False): |
|
|
|
|
set_seed(42) |
|
|
|
|
def exam_gpt_fwd_bwd(placement_policy, |
|
|
|
|
keep_gather, |
|
|
|
|
model_name: str, |
|
|
|
|
use_grad_checkpoint: bool = False, |
|
|
|
|
init_device=get_current_device()): |
|
|
|
|
|
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name) |
|
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() |
|
|
|
|
|
|
|
|
|
with ColoInitContext(device=get_current_device()): |
|
|
|
|
set_seed(42) |
|
|
|
|
with ColoInitContext(device=init_device): |
|
|
|
|
model = model_builder(use_grad_checkpoint) |
|
|
|
|
|
|
|
|
|
set_seed(42) |
|
|
|
|
torch_model = model_builder(use_grad_checkpoint).cuda() |
|
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()): |
|
|
|
|
torch_p.data.copy_(p.data) |
|
|
|
@ -66,9 +73,6 @@ def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_ch
|
|
|
|
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) |
|
|
|
|
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) |
|
|
|
|
|
|
|
|
|
model.eval() |
|
|
|
|
torch_model.eval() |
|
|
|
|
|
|
|
|
|
set_seed(pg.dp_local_rank()) |
|
|
|
|
for i, (input_ids, label) in enumerate(train_dataloader): |
|
|
|
|
# you can only test a single fwd + bwd. |
|
|
|
@ -76,7 +80,14 @@ def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_ch
|
|
|
|
|
if i > 0: |
|
|
|
|
break |
|
|
|
|
input_ids, label = input_ids.cuda(), label.cuda() |
|
|
|
|
|
|
|
|
|
torch_optim.zero_grad() |
|
|
|
|
zero_optim.zero_grad() |
|
|
|
|
|
|
|
|
|
# set random seed is same as torch_model.eval() |
|
|
|
|
set_seed(42) |
|
|
|
|
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) |
|
|
|
|
set_seed(42) |
|
|
|
|
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) |
|
|
|
|
|
|
|
|
|
assert torch.equal(torch_loss, loss) |
|
|
|
|