diff --git a/tests/test_gemini/update/test_fwd_bwd.py b/tests/test_gemini/update/test_fwd_bwd.py index 906cff58b..af98878e9 100644 --- a/tests/test_gemini/update/test_fwd_bwd.py +++ b/tests/test_gemini/update/test_fwd_bwd.py @@ -34,18 +34,25 @@ def check_grad(model: ZeroDDP, torch_model: torch.nn.Module): assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5) +@parameterize('init_device', [get_current_device()]) @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) @parameterize('keep_gather', [False, True]) @parameterize('model_name', ['gpt2', 'bert', 'albert']) @parameterize('use_grad_checkpoint', [False, True]) -def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False): - set_seed(42) +def exam_gpt_fwd_bwd(placement_policy, + keep_gather, + model_name: str, + use_grad_checkpoint: bool = False, + init_device=get_current_device()): + get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - with ColoInitContext(device=get_current_device()): + set_seed(42) + with ColoInitContext(device=init_device): model = model_builder(use_grad_checkpoint) + set_seed(42) torch_model = model_builder(use_grad_checkpoint).cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) @@ -66,9 +73,6 @@ def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_ch torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) - model.eval() - torch_model.eval() - set_seed(pg.dp_local_rank()) for i, (input_ids, label) in enumerate(train_dataloader): # you can only test a single fwd + bwd. @@ -76,7 +80,14 @@ def exam_gpt_fwd_bwd(placement_policy, keep_gather, model_name: str, use_grad_ch if i > 0: break input_ids, label = input_ids.cuda(), label.cuda() + + torch_optim.zero_grad() + zero_optim.zero_grad() + + # set random seed is same as torch_model.eval() + set_seed(42) torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) + set_seed(42) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert torch.equal(torch_loss, loss)