mirror of https://github.com/hpcaitech/ColossalAI
[Gemini] paramWrapper paramTracerHook unitest (#2030)
parent
8daf1b4db1
commit
95c4532fff
|
@ -0,0 +1,52 @@
|
||||||
|
import torch.nn
|
||||||
|
|
||||||
|
from colossalai.tensor.colo_parameter import ColoParameter
|
||||||
|
from colossalai.tensor.param_op_hook import ParamOpHookManager
|
||||||
|
from colossalai.gemini.ophooks.param_trace_hook import ParamTracerHook
|
||||||
|
from colossalai.nn.parallel.data_parallel import _cast_float
|
||||||
|
|
||||||
|
__all__ = ['ParamTracerWrapper']
|
||||||
|
|
||||||
|
class ParamTracerWrapper():
|
||||||
|
|
||||||
|
def __init__(self, module: torch.nn.Module, dtype: torch.dtype = torch.half):
|
||||||
|
super().__init__()
|
||||||
|
self.module = module
|
||||||
|
self.dtype = dtype
|
||||||
|
self.param_op_hook = ParamTracerHook()
|
||||||
|
|
||||||
|
for p in module.parameters():
|
||||||
|
assert isinstance(p, ColoParameter)
|
||||||
|
p.data = p.data.to(dtype)
|
||||||
|
|
||||||
|
self._cast_buffers_to_cuda_dtype()
|
||||||
|
|
||||||
|
def __call__(self, *args, **kwargs):
|
||||||
|
return self.forward(*args, **kwargs)
|
||||||
|
|
||||||
|
def _pre_forward(self):
|
||||||
|
self.param_op_hook.mem_monitor.start()
|
||||||
|
|
||||||
|
def forward(self, *args, **kwargs):
|
||||||
|
args, kwargs = _cast_float(args, self.dtype), _cast_float(kwargs, self.dtype)
|
||||||
|
self.module.zero_grad(set_to_none=True)
|
||||||
|
self._pre_forward()
|
||||||
|
with ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||||
|
outputs = self.module(*args, **kwargs)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def backward(self, loss):
|
||||||
|
with self.param_op_hook.switch_to_backward(), ParamOpHookManager.use_hooks(self.param_op_hook):
|
||||||
|
loss.backward()
|
||||||
|
self._post_backward()
|
||||||
|
|
||||||
|
def _post_backward(self):
|
||||||
|
cuda_volume = self.param_op_hook.mem_monitor.finish()
|
||||||
|
last_model_data = self.param_op_hook._model_data_list[-1]
|
||||||
|
self.param_op_hook._non_model_data_list.append(cuda_volume - last_model_data)
|
||||||
|
|
||||||
|
def _cast_buffers_to_cuda_dtype(self):
|
||||||
|
for buffer in self.module.buffers():
|
||||||
|
buffer.data = buffer.cuda()
|
||||||
|
if torch.is_floating_point(buffer):
|
||||||
|
buffer.data = buffer.data.to(self.dtype)
|
|
@ -0,0 +1,81 @@
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from enum import Enum
|
||||||
|
from functools import partial
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
|
||||||
|
from colossalai.tensor.param_op_hook import ParamOpHook
|
||||||
|
|
||||||
|
|
||||||
|
class TrainingPhase(Enum):
|
||||||
|
FORWARD = 0
|
||||||
|
BACKWARD = 1
|
||||||
|
|
||||||
|
|
||||||
|
class ParamTracerHook(ParamOpHook):
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self._training_phase = TrainingPhase.FORWARD
|
||||||
|
self.mem_monitor = SyncCudaMemoryMonitor()
|
||||||
|
self._non_model_data_list = []
|
||||||
|
self._model_data_list = []
|
||||||
|
|
||||||
|
def _move_params_to_dev(self, params, dev: str) -> int:
|
||||||
|
assert isinstance(dev, str), f"device should be a str not torch.device"
|
||||||
|
comm_volume = 0
|
||||||
|
for p in params:
|
||||||
|
if p.data.device.type != dev:
|
||||||
|
p.data = p.data.to(dev)
|
||||||
|
comm_volume += p.data.numel() * p.data.element_size()
|
||||||
|
if p.grad is not None:
|
||||||
|
if p.grad.device.type != dev:
|
||||||
|
p.grad = p.grad.to(dev)
|
||||||
|
comm_volume += p.grad.numel() * p.grad.element_size()
|
||||||
|
return comm_volume
|
||||||
|
|
||||||
|
def sample_model_data(self, params):
|
||||||
|
data_volume = 0
|
||||||
|
for p in params:
|
||||||
|
data_volume += p.data.numel() * p.data.element_size()
|
||||||
|
if self._training_phase == TrainingPhase.BACKWARD:
|
||||||
|
# add param.grad, actually param.grad is None in this time
|
||||||
|
data_volume *= 2
|
||||||
|
self._model_data_list.append(data_volume)
|
||||||
|
|
||||||
|
def pre_op(self, params):
|
||||||
|
cuda_volume = self.mem_monitor.finish()
|
||||||
|
if len(self._model_data_list):
|
||||||
|
self._non_model_data_list.append(cuda_volume - self._model_data_list[-1])
|
||||||
|
self._move_params_to_dev(params, 'cuda')
|
||||||
|
self.sample_model_data(params)
|
||||||
|
self.mem_monitor.start()
|
||||||
|
|
||||||
|
def post_op(self, params):
|
||||||
|
self._move_params_to_dev(params, 'cpu')
|
||||||
|
|
||||||
|
def pre_forward(self, params: List[torch.Tensor]) -> None:
|
||||||
|
self.pre_op(params)
|
||||||
|
|
||||||
|
def post_forward(self, params: List[torch.Tensor]) -> None:
|
||||||
|
self.post_op(params)
|
||||||
|
|
||||||
|
def pre_backward(self, params: List[torch.Tensor]) -> None:
|
||||||
|
self.pre_op(params)
|
||||||
|
|
||||||
|
def post_backward(self, params: List[torch.Tensor]) -> None:
|
||||||
|
self.post_op(params)
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
|
||||||
|
old_training_phase = self._training_phase
|
||||||
|
try:
|
||||||
|
self._training_phase = training_phase
|
||||||
|
yield
|
||||||
|
finally:
|
||||||
|
self._training_phase = old_training_phase
|
||||||
|
|
||||||
|
switch_to_backward = switch_training_phase
|
||||||
|
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)
|
|
@ -0,0 +1,47 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from colossalai.gemini.memory_tracer.param_tracer_wrapper import ParamTracerWrapper
|
||||||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
|
|
||||||
|
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torch.half):
|
||||||
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||||
|
if criterion:
|
||||||
|
y = model(data)
|
||||||
|
loss = criterion(y, label)
|
||||||
|
else:
|
||||||
|
loss = model(data, label)
|
||||||
|
loss = loss.to(dtype)
|
||||||
|
model.backward(loss)
|
||||||
|
|
||||||
|
def run_param_wrapper_testing():
|
||||||
|
test_models = ['simple_net']
|
||||||
|
|
||||||
|
for model_name in test_models:
|
||||||
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
|
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
||||||
|
|
||||||
|
with ColoInitContext(device=torch.device('cpu')):
|
||||||
|
model = model_builder(checkpoint=False)
|
||||||
|
|
||||||
|
model = ParamTracerWrapper(model)
|
||||||
|
|
||||||
|
for i, (data, label) in enumerate(train_dataloader):
|
||||||
|
if i > 1:
|
||||||
|
break
|
||||||
|
data = data.cuda()
|
||||||
|
label = label.cuda()
|
||||||
|
|
||||||
|
run_fwd_bwd(model, data, label, criterion, False)
|
||||||
|
|
||||||
|
cuda_non_model_data_list = np.array(model.param_op_hook._non_model_data_list) / 1024 ** 2
|
||||||
|
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
|
||||||
|
# print(model.param_op_hook._non_model_data_list)
|
||||||
|
|
||||||
|
del model
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
run_param_wrapper_testing()
|
Loading…
Reference in New Issue