|
|
|
@ -1,9 +1,10 @@
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
from colossalai.utils.cuda import get_current_device
|
|
|
|
|
from colossalai.zero.shard_utils.tensor_utils import colo_model_data_tensor_move, colo_model_data_tensor_move_inline
|
|
|
|
|
from colossalai.zero.shard_utils.tensor_utils import colo_tensor_mem_usage, colo_model_data_tensor_move, colo_model_data_tensor_move_inline, colo_model_data_move_to_cpu, colo_model_tensor_clone
|
|
|
|
|
from colossalai.utils.memory_utils.utils import colo_set_process_memory_fraction, colo_cuda_memory_capacity
|
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
|
from colossalai.zero.sharded_param import ShardedTensor
|
|
|
|
|
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
|
|
|
|
|
import colossalai
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
@ -11,32 +12,79 @@ import torch
|
|
|
|
|
from functools import partial
|
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
|
|
|
|
|
|
def _run_colo_tensor_mem_usage():
|
|
|
|
|
for i in range(1):
|
|
|
|
|
if i == 1:
|
|
|
|
|
t1 = StatefulTensor(torch.randn(2,2))
|
|
|
|
|
t2 = StatefulTensor(torch.randn(4,4))
|
|
|
|
|
c1 , g1 = colo_tensor_mem_usage(t1)
|
|
|
|
|
c2 , g2 = colo_tensor_mem_usage(t2)
|
|
|
|
|
assert c1*4 == c2
|
|
|
|
|
assert g1*4 == g2
|
|
|
|
|
else:
|
|
|
|
|
t1 = torch.randn(2,2)
|
|
|
|
|
t2 = torch.randn(4,4)
|
|
|
|
|
c1 , g1 = colo_tensor_mem_usage(t1)
|
|
|
|
|
c2 , g2 = colo_tensor_mem_usage(t2)
|
|
|
|
|
assert c1*4 == c2
|
|
|
|
|
assert g1*4 == g2
|
|
|
|
|
|
|
|
|
|
def _run_colo_set_process_memory_fraction_and_colo_cuda_memory_capacity():
|
|
|
|
|
frac1 = colo_cuda_memory_capacity()
|
|
|
|
|
colo_set_process_memory_fraction(0.5)
|
|
|
|
|
frac2 = colo_cuda_memory_capacity()
|
|
|
|
|
assert frac2*2 == frac1
|
|
|
|
|
|
|
|
|
|
def _run_colo_model_data_tensor_move_inline():
|
|
|
|
|
for t in [torch.randn(2, 3), ShardedTensor(torch.randn(2, 3))]:
|
|
|
|
|
for t in [StatefulTensor(torch.randn(2,3)), torch.randn(2,3)]:
|
|
|
|
|
colo_model_data_tensor_move_inline(t, torch.device(f"cuda:{get_current_device()}"))
|
|
|
|
|
assert t.device == torch.device(f"cuda:{get_current_device()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _run_colo_model_data_tensor_move():
|
|
|
|
|
for t in [(torch.ones(2, 3), torch.zeros(2, 3).cuda(get_current_device())),
|
|
|
|
|
(ShardedTensor(torch.ones(2, 3)), ShardedTensor(torch.zeros(2, 3).cuda(get_current_device())))]:
|
|
|
|
|
for t in [(StatefulTensor(torch.ones(2, 3)), StatefulTensor(torch.zeros(2, 3).cuda(get_current_device()))),
|
|
|
|
|
(torch.ones(2, 3), torch.zeros(2, 3).cuda(get_current_device()))]:
|
|
|
|
|
cpu_t, cuda_t = t
|
|
|
|
|
colo_model_data_tensor_move(cpu_t, cuda_t)
|
|
|
|
|
assert cuda_t.device == torch.device(f"cuda:{get_current_device()}")
|
|
|
|
|
|
|
|
|
|
def _run_colo_model_data_move_to_cpu():
|
|
|
|
|
for t in [StatefulTensor(torch.randn(2,2)), torch.randn(4,4)]:
|
|
|
|
|
colo_model_data_move_to_cpu(t)
|
|
|
|
|
assert t.device == torch.device("cpu")
|
|
|
|
|
|
|
|
|
|
def _run_colo_model_tensor_clone():
|
|
|
|
|
for t in [StatefulTensor(torch.randn(2,2).cuda(torch.cuda.current_device())), torch.randn(4,4).cuda(torch.cuda.current_device())]:
|
|
|
|
|
if issubclass(type(t), StatefulTensor):
|
|
|
|
|
assert t.payload.device == torch.device(f"cuda:{get_current_device()}")
|
|
|
|
|
else:
|
|
|
|
|
assert t.device == torch.device(f"cuda:{get_current_device()}")
|
|
|
|
|
p = colo_model_tensor_clone(t, torch.device(f"cuda:{get_current_device()}"))
|
|
|
|
|
assert p.device == torch.device(f"cuda:{get_current_device()}")
|
|
|
|
|
for i in range(2):
|
|
|
|
|
for j in range(2):
|
|
|
|
|
if issubclass(type(t), StatefulTensor):
|
|
|
|
|
assert t.payload.device == p.device
|
|
|
|
|
assert t.payload[i][j] == p[i][j]
|
|
|
|
|
else:
|
|
|
|
|
assert t.device == p.device
|
|
|
|
|
assert t[i][j] == p[i][j]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
|
_run_colo_set_process_memory_fraction_and_colo_cuda_memory_capacity()
|
|
|
|
|
_run_colo_model_data_tensor_move_inline()
|
|
|
|
|
_run_colo_model_data_tensor_move()
|
|
|
|
|
|
|
|
|
|
_run_colo_tensor_mem_usage()
|
|
|
|
|
_run_colo_model_data_move_to_cpu()
|
|
|
|
|
_run_colo_model_tensor_clone()
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
|
@pytest.mark.parametrize("world_size", [1, 4])
|
|
|
|
|
@pytest.mark.parametrize("world_size", [4, 5])
|
|
|
|
|
def test_tensor_move(world_size):
|
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
test_tensor_move(4)
|
|
|
|
|