mirror of https://github.com/hpcaitech/ColossalAI
[zero] yet an improved sharded param (#311)
parent
c9e7d9582d
commit
90d3aef62c
|
@ -1,4 +1,4 @@
|
||||||
from colossalai.zero.sharded_param.sharded_param import ShardedParam
|
|
||||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||||
|
from colossalai.zero.sharded_param.sharded_param import ShardedParam, ShardedParamV2
|
||||||
|
|
||||||
__all__ = ['ShardedParam', 'ShardedTensor']
|
__all__ = ['ShardedParam', 'ShardedTensor', 'ShardedParamV2']
|
||||||
|
|
|
@ -6,6 +6,40 @@ import torch.distributed as dist
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.core import global_context as gpc
|
||||||
from colossalai.zero.sharded_model._zero3_utils import get_shard
|
from colossalai.zero.sharded_model._zero3_utils import get_shard
|
||||||
|
from colossalai.zero.sharded_param import ShardedTensor
|
||||||
|
from typing import Union, Tuple, Optional
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class ShardedParamV2(object):
|
||||||
|
|
||||||
|
def __init__(self, param: torch.nn.Parameter, process_group: Optional[dist.ProcessGroup] = None) -> None:
|
||||||
|
self._data_sharded_tensor = ShardedTensor(param.data, process_group)
|
||||||
|
if param.requires_grad and param.grad is not None:
|
||||||
|
self._grad_sharded_tensor = ShardedTensor(param.grad, process_group)
|
||||||
|
param.grad = None
|
||||||
|
else:
|
||||||
|
self._grad_sharded_tensor = None
|
||||||
|
|
||||||
|
# make sure the shared param is the only owner of payload
|
||||||
|
param.data = torch.empty([], dtype=param.dtype, device=param.device)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self):
|
||||||
|
return self._data_sharded_tensor.payload
|
||||||
|
|
||||||
|
@data.setter
|
||||||
|
def data(self, t: torch.Tensor):
|
||||||
|
self._data_sharded_tensor.payload = t
|
||||||
|
|
||||||
|
@property
|
||||||
|
def grad(self):
|
||||||
|
return self._grad_sharded_tensor.payload
|
||||||
|
|
||||||
|
@grad.setter
|
||||||
|
def grad(self, t: torch.Tensor):
|
||||||
|
self._grad_sharded_tensor.payload = t
|
||||||
|
|
||||||
|
|
||||||
class ShardedParam(object):
|
class ShardedParam(object):
|
||||||
|
|
|
@ -1,9 +1,11 @@
|
||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# -*- encoding: utf-8 -*-
|
# -*- encoding: utf-8 -*-
|
||||||
|
|
||||||
|
from copy import deepcopy
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
|
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
|
@ -11,7 +13,7 @@ from colossalai.zero.shard_utils import TensorShardStrategy
|
||||||
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
|
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from colossalai.logging import get_dist_logger, disable_existing_loggers
|
from colossalai.logging import get_dist_logger, disable_existing_loggers
|
||||||
from tests.test_zero_data_parallel.common import Net, CONFIG
|
from tests.test_zero_data_parallel.common import Net, CONFIG, allclose
|
||||||
|
|
||||||
|
|
||||||
def run_shard_tensor(rank, world_size, port):
|
def run_shard_tensor(rank, world_size, port):
|
||||||
|
@ -36,28 +38,33 @@ def test_shard_tensor():
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
def run_init_shard_param(rank, world_size, port):
|
def _run_shard_param_v2(rank, world_size, port):
|
||||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
param = torch.nn.Parameter(data=torch.rand(2, 3))
|
|
||||||
sparam = ShardedParam(param, None, True)
|
|
||||||
payload = sparam.payload(torch.device('cuda'))
|
|
||||||
assert (list(payload.shape) == [3])
|
|
||||||
del sparam
|
|
||||||
|
|
||||||
param_shape = (2, 3)
|
param = torch.nn.Parameter(torch.randn(2, 3))
|
||||||
sparam = ShardedParam(param_shape, process_group=None, is_sharded=True, device=torch.device('cpu'))
|
param_ref = deepcopy(param)
|
||||||
payload = sparam.payload(torch.device('cuda'))
|
sparam = ShardedParamV2(param=param, process_group=None)
|
||||||
assert (list(payload.shape) == [3])
|
|
||||||
|
|
||||||
param_shape = (2, 3)
|
allclose(sparam.data, param_ref.data)
|
||||||
sparam = ShardedParam(param_shape, process_group=None, is_sharded=False, device=torch.device('cpu'))
|
assert (param.data.numel() == 1)
|
||||||
payload = sparam.payload(torch.device('cuda'))
|
|
||||||
assert (list(payload.shape) == [2, 3])
|
|
||||||
|
|
||||||
|
|
||||||
def run_shard_param_check(rank, world_size, port):
|
@pytest.mark.dist
|
||||||
|
def test_shard_param_v2():
|
||||||
|
world_size = 2
|
||||||
|
run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
def _run_test_shard_param(rank, world_size, port):
|
||||||
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
|
||||||
|
param = torch.nn.Parameter(torch.randn(2, 3))
|
||||||
|
param_ref = deepcopy(param)
|
||||||
|
sparam = ShardedParamV2(param=param, process_group=None)
|
||||||
|
print(sparam.data)
|
||||||
|
print(param_ref.data)
|
||||||
|
|
||||||
logger = get_dist_logger()
|
logger = get_dist_logger()
|
||||||
model = Net()
|
model = Net()
|
||||||
|
|
||||||
|
@ -77,12 +84,31 @@ def run_shard_param_check(rank, world_size, port):
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
def test_shard_shape():
|
def test_shard_param():
|
||||||
world_size = 2
|
world_size = 2
|
||||||
run_func = partial(run_shard_param_check, world_size=world_size, port=free_port())
|
run_func = partial(_run_test_shard_param, world_size=world_size, port=free_port())
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
def run_init_shard_param(rank, world_size, port):
|
||||||
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
param = torch.nn.Parameter(data=torch.rand(2, 3))
|
||||||
|
sparam = ShardedParam(param, None, True)
|
||||||
|
payload = sparam.payload(torch.device('cuda'))
|
||||||
|
assert (list(payload.shape) == [3])
|
||||||
|
del sparam
|
||||||
|
|
||||||
|
param_shape = (2, 3)
|
||||||
|
sparam = ShardedParam(param_shape, process_group=None, is_sharded=True, device=torch.device('cpu'))
|
||||||
|
payload = sparam.payload(torch.device('cuda'))
|
||||||
|
assert (list(payload.shape) == [3])
|
||||||
|
|
||||||
|
param_shape = (2, 3)
|
||||||
|
sparam = ShardedParam(param_shape, process_group=None, is_sharded=False, device=torch.device('cpu'))
|
||||||
|
payload = sparam.payload(torch.device('cuda'))
|
||||||
|
assert (list(payload.shape) == [2, 3])
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
def test_init_shard_param():
|
def test_init_shard_param():
|
||||||
world_size = 2
|
world_size = 2
|
||||||
|
@ -92,5 +118,6 @@ def test_init_shard_param():
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_shard_tensor()
|
test_shard_tensor()
|
||||||
test_shard_shape()
|
test_shard_param()
|
||||||
|
test_shard_param_v2()
|
||||||
test_init_shard_param()
|
test_init_shard_param()
|
||||||
|
|
Loading…
Reference in New Issue