Support 4d parallel + flash attention (#5789)

* support tp + sp + pp

* remove comments

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
pull/5827/head^2
Edenzzzz 2024-06-17 17:40:47 +08:00 committed by GitHub
parent 2ddf624a86
commit 8795bb2e80
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 192 additions and 373 deletions

View File

@ -999,7 +999,9 @@ class HybridParallelPlugin(PipelinePluginBase):
), f"World size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
if enable_sequence_parallelism:
self.sequence_parallelism_mode = sequence_parallelism_mode if sequence_parallelism_mode is not None else "1"
self.sequence_parallelism_mode = (
sequence_parallelism_mode if sequence_parallelism_mode is not None else "all_to_all"
)
assert (
self.sequence_parallelism_mode in SUPPORT_SP_MODE
), f"Sequence parallelism mode {self.sequence_parallelism_mode} is not in the supported list {SUPPORT_SP_MODE}"
@ -1014,19 +1016,13 @@ class HybridParallelPlugin(PipelinePluginBase):
self.sp_size = 1
self.dp_size = dist.get_world_size() // (tp_size * pp_size)
elif self.sequence_parallelism_mode in ["all_to_all"]:
assert (
tp_size == 1
), f"Sequence parallelism mode {self.sequence_parallelism_mode} cannot be used with tensor parallelism"
assert (
pp_size == 1
), f"Sequence parallelism mode {self.sequence_parallelism_mode} cannot be used with pipeline parallelism"
self.sp_size = dist.get_world_size() if sp_size is None else sp_size
self.dp_size = dist.get_world_size() // (self.sp_size * pp_size)
self.sp_size = 1 if sp_size is None else sp_size
self.dp_size = dist.get_world_size() // (self.sp_size * pp_size * tp_size)
else:
self.dp_size = dist.get_world_size() // (tp_size * pp_size)
assert (
sp_size == 1 or sp_size is None
), f"sp_size can only be set to a >1 number when enable_sequence_parallelism is True"
), f"You should not set sp_size when sequence parallelism is not enabled."
self.sp_size = 1
self.tp_size = tp_size
@ -1040,11 +1036,22 @@ class HybridParallelPlugin(PipelinePluginBase):
self.enable_jit_fused = enable_jit_fused
self.enable_sequence_parallelism = enable_sequence_parallelism
if dp_outside:
self.dp_axis, self.pp_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3
(
self.dp_axis,
self.pp_axis,
self.tp_axis,
self.sp_axis,
) = (
0,
1,
2,
3,
)
self.pg_mesh = ProcessGroupMesh(self.dp_size, self.pp_size, self.tp_size, self.sp_size)
else:
self.pp_axis, self.dp_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.dp_size, self.tp_size, self.sp_size)
self.stage_manager = None
self.schedule = None
self.custom_policy = custom_policy

View File

@ -18,6 +18,7 @@ from transformers.models.llama.modeling_llama import (
LlamaForSequenceClassification,
LlamaModel,
StaticCache,
apply_rotary_pos_emb,
repeat_kv,
)
from transformers.utils import logging
@ -459,37 +460,53 @@ class LlamaPipelineForwards:
return {"hidden_states": hidden_states}
def get_llama_flash_attention_forward(shard_config, sp_mode, sp_group, sp_size):
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
try:
from transformers.models.llama.modeling_llama import repeat_kv
except:
warnings.warn("using llamav1, llamav1 hasn't repeat_kv function")
def get_llama_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
def forward(
self: LlamaAttention,
self,
hidden_states: torch.Tensor,
attention_mask: Optional[dict] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if sp_mode is not None:
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
assert (sp_size is not None) and (
sp_group is not None
), "Must specify sp_size and sp_group for sequence parallel"
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
bsz, q_len, _ = hidden_states.size()
# sp: modify sp_len when sequence parallel mode is ring
if sp_mode in ["split_gather", "ring"]:
q_len *= sp_size
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
@ -520,30 +537,66 @@ def get_llama_flash_attention_forward(shard_config, sp_mode, sp_group, sp_size):
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if shard_config.enable_flash_attention:
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
attn_output = self.o_proj(attn_output)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
return attn_output, None, past_key_value
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
return forward
def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
def get_llama_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
logger = logging.get_logger(__name__)
assert shard_config.enable_flash_attention, "Flash Attention is not enabled."
def forward(
self: LlamaModel,
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
@ -560,7 +613,6 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
@ -569,16 +621,18 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
seq_len = inputs_embeds.shape[1]
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
@ -586,32 +640,29 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_len, device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# embed positions
hidden_states = inputs_embeds
# in this case, attention_mask is a dict rather than a tensor
mask_shape = (hidden_states.shape[0], 1, past_seen_tokens, past_seen_tokens)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
hidden_states.dtype,
hidden_states.device,
q_padding_mask=attention_mask,
is_causal=True,
)
if shard_config.enable_flash_attention:
mask_shape = (inputs_embeds.shape[0], 1, past_seen_tokens + seq_len, past_seen_tokens + seq_len)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
inputs_embeds.dtype,
inputs_embeds.device,
q_padding_mask=attention_mask,
is_causal=True,
)
else:
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
@ -621,7 +672,6 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
@ -633,6 +683,7 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
@ -654,6 +705,11 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
hidden_states = self.norm(hidden_states)
if sp_mode == "ring" or sp_mode == "split_gather":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
elif sp_mode == "all_to_all":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
@ -665,6 +721,7 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
@ -778,240 +835,3 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
)
return forward
def get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group):
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
# sp: modify sp_len when sequence parallel mode is ring
if sp_mode in ["split_gather", "ring"]:
q_len *= sp_size
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
query_states = all_to_all_comm(query_states, sp_group)
key_states = all_to_all_comm(key_states, sp_group)
value_states = all_to_all_comm(value_states, sp_group)
bsz, q_len, _ = query_states.size()
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
return forward
def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
logger = logging.get_logger(__name__)
def forward(
self: LlamaModel,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value=past_key_values, output_attentions=output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = (
next_decoder_cache.to_legacy_cache()
if isinstance(next_decoder_cache, Cache)
else next_decoder_cache
)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if sp_mode == "ring" or sp_mode == "split_gather":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
elif sp_mode == "all_to_all":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return forward

View File

@ -20,9 +20,7 @@ from colossalai.shardformer.layer import (
from ..modeling.llama import (
LlamaPipelineForwards,
get_llama_flash_attention_forward,
get_llama_model_forward_for_flash_attn,
get_llama_seq_parallel_attention_forward,
get_llama_seq_parallel_model_forward,
get_llama_flash_attention_model_forward,
get_lm_forward_with_dist_cross_entropy,
)
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
@ -82,33 +80,7 @@ class LlamaPolicy(Policy):
)
sp_partial_derived = sp_mode in ["split_gather", "ring"]
use_flash_attention = self.shard_config.enable_flash_attention
# Currently sp cannot to be used with flashattention
if sp_mode in ["split_gather", "ring", "all_to_all"]:
if use_flash_attention:
warnings.warn(
f"Sequence parallelism mode {sp_mode} need to be used with FlashAttention, will disable FlashAttention automatically."
)
use_flash_attention = False
if sp_mode in ["split_gather", "ring"]:
self.append_or_create_method_replacement(
description={
"forward": get_llama_seq_parallel_model_forward(
sp_mode=sp_mode, sp_size=sp_size, sp_group=sp_group
),
},
policy=policy,
target_key=LlamaModel,
)
self.append_or_create_method_replacement(
description={
"forward": get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group),
},
policy=policy,
target_key=attn_cls,
)
elif sp_mode == "all_to_all":
if sp_mode == "all_to_all":
decoder_attribute_replacement = {
"num_heads": self.model.config.num_attention_heads // sp_size,
}
@ -118,24 +90,27 @@ class LlamaPolicy(Policy):
policy[attn_cls] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
if self.shard_config.enable_flash_attention or self.shard_config.enable_sequence_parallelism:
self.append_or_create_method_replacement(
description={
"forward": get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group),
"forward": get_llama_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
},
policy=policy,
target_key=attn_cls,
)
self.append_or_create_method_replacement(
description={
"forward": get_llama_seq_parallel_model_forward(
sp_mode=sp_mode,
sp_size=sp_size,
sp_group=sp_group,
),
},
policy=policy,
target_key=LlamaModel,
)
if self.pipeline_stage_manager is None:
self.append_or_create_method_replacement(
description={
"forward": get_llama_flash_attention_model_forward(
self.shard_config,
sp_mode=sp_mode,
sp_size=sp_size,
sp_group=sp_group,
),
},
policy=policy,
target_key=LlamaModel,
)
if self.shard_config.enable_tensor_parallelism:
assert (
@ -235,25 +210,6 @@ class LlamaPolicy(Policy):
target_key=LlamaModel,
)
# use flash attention
if use_flash_attention:
self.append_or_create_method_replacement(
description={
"forward": get_llama_flash_attention_forward(self.shard_config, sp_mode, sp_group, sp_size),
},
policy=policy,
target_key=attn_cls,
)
if self.pipeline_stage_manager is None:
# replace llama model forward method
self.append_or_create_method_replacement(
description={
"forward": get_llama_model_forward_for_flash_attn(self.shard_config),
},
policy=policy,
target_key=LlamaModel,
)
return policy
def postprocess(self):

View File

@ -72,6 +72,7 @@ def main():
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini")
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini")
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size")
parser.add_argument("--sp", type=int, default=1, help="Sequence parallel size")
parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini")
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size")
parser.add_argument("--mbs", type=int, default=1, help="Micro batch size of pipeline parallel")
@ -174,6 +175,8 @@ def main():
tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero,
sp_size=args.sp,
enable_sequence_parallelism=args.sp > 1,
enable_fused_normalization=torch.cuda.is_available(),
enable_flash_attention=args.xformers,
microbatch_size=args.mbs,

View File

@ -120,9 +120,20 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
check_weight(
llama_model, shard_llama_model, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
)
try:
check_weight(
llama_model,
shard_llama_model,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
except Exception as e:
print(f"Failed config: {test_config}")
raise e
# check grads
check_all_grad_tensors(grads_to_check)
@ -133,9 +144,10 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
@parameterize(
"test_config",
[
{
{ # Test ring + Flash attention
"tp_size": 2,
"pp_size": 1,
"sp_size": 2,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "ring",
@ -145,14 +157,16 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"num_microbatches": 1,
{ # Ulysess + Flash attention
"tp_size": 1,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": False,
"sequence_parallelism_mode": "all_to_all",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
@ -164,7 +178,18 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"use_lazy_init": True,
"zero_stage": 2,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": False,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
},
@ -213,7 +238,11 @@ def run_llama_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_llama")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
try:
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
except Exception as e:
print(f"Failed config: {test_config}")
raise e
clear_layout_converter()
Randomizer.reset_index()
@ -263,7 +292,11 @@ def run_llama_3d_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_llama")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
try:
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
except Exception as e:
print(f"Failed config: {test_config}")
raise e
clear_layout_converter()
Randomizer.reset_index()