[shardformer] upgrade transformers to 4.39.3 (#5815)

* [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807)

* [shardformer] fix modeling of gpt2 and gptj

* [shardformer] fix whisper modeling

* [misc] update requirements

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* [shardformer]upgrade transformers for mistral (#5808)

* upgrade transformers for mistral

* fix

* fix

* [shardformer]upgrade transformers for llama (#5809)

* update transformers

fix

* fix

* fix

* [inference] upgrade transformers (#5810)

* update transformers

fix

* fix

* fix

* fix

* fix

* [gemini] update transformers for gemini (#5814)

---------

Co-authored-by: ver217 <lhx0217@gmail.com>
pull/5820/head
flybird11111 2024-06-14 10:59:33 +08:00 committed by GitHub
parent 3bcbba9262
commit 2ddf624a86
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 257 additions and 240 deletions

View File

@ -314,7 +314,7 @@ def save_state_dict(state_dict: dict, checkpoint_file_path: str, use_safetensors
use_safetensors (bool): whether to use safetensors to save the checkpoint.
"""
# Move all tensors in the state_dict to CPU before saving to avoid serialization issues
state_dict_cpu = tree_map(lambda x: x.cpu() if torch.is_tensor(x) else x, state_dict)
state_dict_cpu = tree_map(lambda x: x.data.cpu() if torch.is_tensor(x) else x, state_dict)
if use_safetensors:
assert is_safetensors_available(), "safetensors is not available."

View File

@ -6,11 +6,7 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.models.llama.modeling_llama import (
LlamaAttention,
@ -137,6 +133,7 @@ def glide_llama_model_forward(
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
@ -147,57 +144,43 @@ def glide_llama_model_forward(
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
position_ids = position_ids.unsqueeze(0)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
@ -212,6 +195,7 @@ def glide_llama_model_forward(
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
@ -230,7 +214,9 @@ def glide_llama_model_forward(
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(

View File

@ -738,7 +738,10 @@ class GPT2PipelineForwards:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning_once(

View File

@ -32,6 +32,7 @@ def _get_attention_mask(
hidden_states: torch.Tensor,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]],
attention_mask: Optional[torch.FloatTensor],
use_flash_attention_2: bool = False,
) -> Optional[Union[torch.Tensor, dict]]:
batch_size, seq_len = hidden_states.shape[:2]
past_key_values_length = 0
@ -47,7 +48,7 @@ def _get_attention_mask(
attention_mask,
is_causal=True,
)
elif attention_mask is not None:
elif use_flash_attention_2 and attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
@ -162,7 +163,9 @@ class GPTJPipelineForwards:
output_shape = input_shape + (hidden_states.size(-1),)
attention_mask = _get_attention_mask(self, shard_config, hidden_states, past_key_values, attention_mask)
attention_mask = _get_attention_mask(
self, shard_config, hidden_states, past_key_values, attention_mask, self._use_flash_attention_2
)
if self.gradient_checkpointing and self.training:
if use_cache:
@ -419,7 +422,10 @@ class GPTJPipelineForwards:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning_once(
@ -712,7 +718,9 @@ def gptj_model_forward_for_flash_attention(shard_config: ShardConfig):
hidden_states = self.drop(hidden_states)
attention_mask = _get_attention_mask(self, shard_config, hidden_states, past_key_values, attention_mask)
attention_mask = _get_attention_mask(
self, shard_config, hidden_states, past_key_values, attention_mask, self._use_flash_attention_2
)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
@ -886,7 +894,9 @@ def gptj_sequence_parallel_forward_fn(shard_config: ShardConfig):
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
attention_mask = _get_attention_mask(self, shard_config, hidden_states, past_key_values, attention_mask)
attention_mask = _get_attention_mask(
self, shard_config, hidden_states, past_key_values, attention_mask, self._use_flash_attention_2
)
if self.gradient_checkpointing and self.training:
if use_cache:

View File

@ -7,11 +7,7 @@ import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.cache_utils import Cache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
@ -21,7 +17,7 @@ from transformers.models.llama.modeling_llama import (
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaModel,
apply_rotary_pos_emb,
StaticCache,
repeat_kv,
)
from transformers.utils import logging
@ -55,6 +51,7 @@ class LlamaPipelineForwards:
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
@ -67,6 +64,11 @@ class LlamaPipelineForwards:
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with pipeline parallelism. Setting `use_cache=False`..."
)
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
@ -83,14 +85,24 @@ class LlamaPipelineForwards:
device = input_ids.device if input_ids is not None else inputs_embeds.device
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
else:
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
device = hidden_states.device
seq_length_with_past = seq_length
past_key_values_length = 0
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + hidden_states.shape[1], device=device)
seq_length_with_past = seq_length + past_seen_tokens
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
@ -103,18 +115,8 @@ class LlamaPipelineForwards:
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
use_cache = False
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
position_ids = cache_position.unsqueeze(0)
# embed positions, for the first stage, hidden_states is the input embeddings,
# for the other stages, hidden_states is the output of the previous stage
@ -129,28 +131,9 @@ class LlamaPipelineForwards:
is_causal=True,
)
else:
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
)
attention_mask = self._update_causal_mask(attention_mask, hidden_states, cache_position)
if self.gradient_checkpointing and self.training:
if self.gradient_checkpointing and self.training and use_cache:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
@ -190,6 +173,7 @@ class LlamaPipelineForwards:
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
@ -199,6 +183,7 @@ class LlamaPipelineForwards:
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
@ -249,6 +234,7 @@ class LlamaPipelineForwards:
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
@ -306,6 +292,7 @@ class LlamaPipelineForwards:
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
@ -368,6 +355,7 @@ class LlamaPipelineForwards:
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
@ -401,6 +389,7 @@ class LlamaPipelineForwards:
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
@ -486,6 +475,7 @@ def get_llama_flash_attention_forward(shard_config, sp_mode, sp_group, sp_size):
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
@ -520,13 +510,14 @@ def get_llama_flash_attention_forward(shard_config, sp_mode, sp_group, sp_size):
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
@ -562,6 +553,7 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
@ -572,41 +564,40 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# embed positions
hidden_states = inputs_embeds
# in this case, attention_mask is a dict rather than a tensor
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
mask_shape = (hidden_states.shape[0], 1, past_seen_tokens, past_seen_tokens)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
hidden_states.dtype,
@ -625,43 +616,38 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
next_decoder_cache = None
for idx, decoder_layer in enumerate(self.layers):
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
@ -672,7 +658,11 @@ def get_llama_model_forward_for_flash_attn(shard_config: ShardConfig):
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
)
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
@ -700,6 +690,7 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
@ -744,6 +735,7 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
@ -789,6 +781,8 @@ def get_lm_forward_with_dist_cross_entropy(shard_config: ShardConfig):
def get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group):
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
def forward(
self,
hidden_states: torch.Tensor,
@ -797,6 +791,7 @@ def get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group):
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
# sp: modify sp_len when sequence parallel mode is ring
@ -835,18 +830,14 @@ def get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group):
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
@ -854,18 +845,9 @@ def get_llama_seq_parallel_attention_forward(sp_mode, sp_size, sp_group):
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
@ -903,7 +885,7 @@ def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
logger = logging.get_logger(__name__)
def forward(
self,
self: LlamaModel,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
@ -913,6 +895,7 @@ def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
@ -924,56 +907,13 @@ def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
# modify past_key_values_length when using sequence parallel
past_key_values_length *= sp_size
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time, and must specify either one"
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, attention_mask.shape, inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
if use_cache:
logger.warning_once(
@ -981,6 +921,29 @@ def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
)
use_cache = False
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_seen_tokens = past_key_values.get_seq_length()
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError("cache_position is a required argument when using StaticCache.")
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
attention_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
@ -990,14 +953,12 @@ def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value, output_attentions)
return module(*inputs, past_key_value=past_key_values, output_attentions=output_attentions)
return custom_forward
@ -1013,15 +974,20 @@ def get_llama_seq_parallel_model_forward(sp_mode, sp_size, sp_group):
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
next_decoder_cache = (
next_decoder_cache.to_legacy_cache()
if isinstance(next_decoder_cache, Cache)
else next_decoder_cache
)
if output_attentions:
all_self_attns += (layer_outputs[1],)

View File

@ -4,7 +4,10 @@ from typing import List, Optional, Tuple, Union
import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
@ -77,7 +80,7 @@ class MistralForwards:
else:
position_ids = position_ids.view(-1, seq_length).long()
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
@ -97,9 +100,18 @@ class MistralForwards:
is_causal=True,
)
else:
if self._use_flash_attention_2:
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
@ -462,7 +474,7 @@ def get_mistral_model_forward_for_flash_attn(shard_config: ShardConfig):
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
@ -481,9 +493,18 @@ def get_mistral_model_forward_for_flash_attn(shard_config: ShardConfig):
is_causal=True,
)
else:
if self._use_flash_attention_2:
if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(

View File

@ -17,6 +17,7 @@ from transformers.modeling_outputs import (
SequenceClassifierOutput,
)
from transformers.models.whisper.modeling_whisper import (
_HIDDEN_STATES_START_POSITION,
WhisperDecoder,
WhisperEncoder,
WhisperForAudioClassification,
@ -166,6 +167,7 @@ def get_whisper_decoder_forward_for_flash_attention(shard_config: ShardConfig):
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
position_ids=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
@ -199,9 +201,13 @@ def get_whisper_decoder_forward_for_flash_attention(shard_config: ShardConfig):
# embed positions
if input_ids is not None:
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
positions = self.embed_positions(
input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids
)
else:
positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length)
positions = self.embed_positions(
inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids
)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
@ -599,6 +605,7 @@ class WhisperPipelineForwards:
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
position_ids=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
@ -716,9 +723,13 @@ class WhisperPipelineForwards:
# embed positions
if input_ids is not None:
positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length)
positions = self.embed_positions(
input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids
)
else:
positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length)
positions = self.embed_positions(
inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids
)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
@ -841,6 +852,7 @@ class WhisperPipelineForwards:
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
@ -944,6 +956,7 @@ class WhisperPipelineForwards:
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
@ -986,6 +999,7 @@ class WhisperPipelineForwards:
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
@ -1048,6 +1062,7 @@ class WhisperPipelineForwards:
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
decoder_inputs_embeds=decoder_inputs_embeds,
decoder_position_ids=decoder_position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
@ -1118,6 +1133,12 @@ class WhisperPipelineForwards:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.config.use_weighted_layer_sum:
output_hidden_states = True
elif output_hidden_states is None:
output_hidden_states = self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# audio_classification only holds encoder
@ -1138,7 +1159,8 @@ class WhisperPipelineForwards:
return encoder_outputs
if self.config.use_weighted_layer_sum:
hidden_states = torch.stack(encoder_outputs, dim=1)
hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:

View File

@ -34,15 +34,11 @@ class GPTJPolicy(Policy):
return self.model
def module_policy(self):
from transformers.models.gptj.modeling_gptj import GPTJAttention, GPTJBlock, GPTJModel
ATTN_IMPLEMENTATION = {
"eager": GPTJAttention,
}
from transformers.models.gptj.modeling_gptj import GPTJ_ATTENTION_CLASSES, GPTJBlock, GPTJModel
policy = {}
attn_cls = ATTN_IMPLEMENTATION[self.origin_attn_implement]
attn_cls = GPTJ_ATTENTION_CLASSES[self.origin_attn_implement]
embedding_cls = None
if self.shard_config.enable_tensor_parallelism:

View File

@ -42,11 +42,13 @@ class MistralPolicy(Policy):
MistralDecoderLayer,
MistralFlashAttention2,
MistralModel,
MistralSdpaAttention,
)
ATTN_IMPLEMENTATION = {
"eager": MistralAttention,
"flash_attention_2": MistralFlashAttention2,
"sdpa": MistralSdpaAttention,
}
policy = {}

View File

@ -16,7 +16,7 @@ ray
sentencepiece
google
protobuf
transformers>=4.36.2,<4.40.0
transformers==4.39.3
peft>=0.7.1
bitsandbytes>=0.39.0
rpyc==6.0.0

View File

@ -28,15 +28,22 @@ def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, K_H, D, dtype):
torch.manual_seed(10)
TOTAL_TOKENS = BATCH_SIZE * SEQ_LEN
# our crafted op equals to Transformers
x0 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D, dtype=dtype)
x1 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D, dtype=dtype)
x0 = torch.randn(BATCH_SIZE, H, SEQ_LEN, D, dtype=dtype)
x1 = torch.randn(BATCH_SIZE, H, SEQ_LEN, D, dtype=dtype)
position_ids = torch.arange(TOTAL_TOKENS).reshape((BATCH_SIZE, SEQ_LEN))
emb = LlamaRotaryEmbedding(D)
cos, sin = emb(x0, TOTAL_TOKENS)
cos, sin = emb(x0, position_ids)
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin)
cos = cos.reshape((TOTAL_TOKENS, -1))
sin = sin.reshape((TOTAL_TOKENS, -1))
cos_2 = cos[:, : D // 2]
sin_2 = sin[:, : D // 2]
position_ids = torch.arange(TOTAL_TOKENS)
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin, position_ids)
embd_stimulated_x = torch_rotary_emb(x0, cos_2, sin_2)
x2 = x0.transpose(1, 2).reshape(TOTAL_TOKENS, H, D)
embd_stimulated_x = torch_rotary_emb(x2, cos_2, sin_2)
embd_stimulated_x = embd_stimulated_x.reshape((BATCH_SIZE, SEQ_LEN, H, D)).transpose(1, 2)
assert torch.allclose(embd_x0, embd_stimulated_x)
# create data

View File

@ -43,15 +43,19 @@ def torch_rotary_emb(x, cos, sin):
def test_rotary_emb(BATCH_SIZE, SEQ_LEN, H, D, dtype, use_new_kcache_layout):
TOTAL_TOKENS = BATCH_SIZE * SEQ_LEN
# our crafted op equals to Transformers
x0 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D)
x1 = torch.randn(TOTAL_TOKENS, SEQ_LEN, D)
x0 = torch.randn(BATCH_SIZE, H, SEQ_LEN, D, dtype=dtype)
x1 = torch.randn(BATCH_SIZE, H, SEQ_LEN, D, dtype=dtype)
emb = LlamaRotaryEmbedding(D)
cos, sin = emb(x0, TOTAL_TOKENS)
position_ids = torch.arange(TOTAL_TOKENS).reshape((BATCH_SIZE, SEQ_LEN))
cos, sin = emb(x0, position_ids)
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin)
cos = cos.reshape((TOTAL_TOKENS, -1))
sin = sin.reshape((TOTAL_TOKENS, -1))
cos_2 = cos[:, :32]
sin_2 = sin[:, :32]
position_ids = torch.arange(TOTAL_TOKENS)
embd_x0, _ = apply_rotary_pos_emb(x0, x1, cos, sin, position_ids)
embd_stimulated_x = torch_rotary_emb(x0, cos_2, sin_2)
x2 = x0.transpose(1, 2).reshape(TOTAL_TOKENS, H, D)
embd_stimulated_x = torch_rotary_emb(x2, cos_2, sin_2)
embd_stimulated_x = embd_stimulated_x.reshape((BATCH_SIZE, SEQ_LEN, H, D)).transpose(1, 2)
assert torch.allclose(embd_x0, embd_stimulated_x)
# create data