add moe context, moe utilities and refactor gradient handler (#455)

pull/461/head
HELSON 2022-03-18 16:38:32 +08:00 committed by GitHub
parent af185b5519
commit 84fd7c1d4d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 255 additions and 125 deletions

View File

@ -1,5 +1,6 @@
from .config import Config, ConfigException
from .parallel_context import ParallelContext
from .moe_context import MoeContext
from .parallel_mode import ParallelMode
from .process_group_initializer import *
from .random import *

View File

@ -0,0 +1,151 @@
import torch
import torch.distributed as dist
from .parallel_mode import ParallelMode
def _check_sanity():
from colossalai.core import global_context as gpc
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
raise NotImplementedError("Moe is not compatible with tensor or "
"pipeline parallel at present.")
class MoeInfo:
"""Moe parallelism information, storing parallel sizes and groups.
"""
def __init__(self, ep_size: int, dp_size: int):
_check_sanity()
self.ep_size = ep_size
self.dp_size = dp_size
self.ep_group = None
# data parallel group for experts, since ep_group is different
# we may have different dp_group from get_group(ParallelMode.DATA)
self.dp_group = None
# Here we assume tensor parallel size = 1
# Otherwise, MoE can't be used
# Since TENSOR parallel group and DATA parallel group
# have been created, we can use them directly.
if ep_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.TENSOR)
self.dp_group = gpc.get_group(ParallelMode.DATA)
return
if dp_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.DATA)
self.dp_group = gpc.get_group(ParallelMode.TENSOR)
return
rank = dist.get_rank()
# Create expert parallel group
for i in range(dp_size):
ranks = [i * ep_size + j for j in range(ep_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.ep_group = group
# Create data parallel group
for j in range(ep_size):
ranks = [i * ep_size + j for i in range(dp_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.dp_group = group
class MoeContext:
"""MoE parallel context manager. This class manages different
parallel groups in MoE context and MoE loss in training.
"""
__instance = None
@staticmethod
def get_instance():
if MoeContext.__instance is None:
MoeContext.__instance = MoeContext()
return MoeContext.__instance
def __init__(self):
self.world_size = 1
# Users may want to set maximum expert parallel size smaller than the world size
# since very low bandwidth across nodes may constrain the performance of MoE
# When we have a maximum expert parallel size, we have a minimum data parallel size naturally
self.max_ep_size = 1
self.min_dp_size = 1
self.aux_loss = None
self.use_kernel_optim = True
self.has_setup = False
self._info_dict = dict()
@property
def information(self):
return self._info_dict
@property
def is_initialized(self):
return self.has_setup
def setup(self, seed: int, use_kernel_optim: bool = True):
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
_check_sanity()
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
self.world_size = dist.get_world_size()
from colossalai.core import global_context as gpc
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
assert self.world_size % self.max_ep_size == 0, \
"Maximum epxert parallel size must be a factor of the number of GPUs"
self.min_dp_size = self.world_size // self.max_ep_size
# Enabling kernel optimization may raise error in some cases
# Users can close kernel optimization manually
self.use_kernel_optim = use_kernel_optim
from .random import moe_set_seed
moe_set_seed(seed)
self.has_setup = True
def get_info(self, num_experts: int):
"""Automatically deploys experts and returns parallel infomation about
distributed communication groups.
"""
gt_flag = num_experts % self.max_ep_size == 0 # check whether num_experts is greater
lt_flag = self.max_ep_size % num_experts == 0 # check whether num_experts is less
assert gt_flag or lt_flag, "Automatic experts placement do not support such situation right now."
# If the number of experts is greater than maximum expert parallel size,
# there are multiple experts in each GPU and each GPU has different experts
# So it's data parallel size is 1
# Otherwise, there is only one expert in each GPU
# The data parallel size should be calculated
dp_size = 1 if gt_flag else self.max_ep_size // num_experts
ep_size = self.max_ep_size // dp_size
# Calculate the number of experts for each GPU
num_local_experts = 1 if lt_flag else num_experts // self.max_ep_size
# Don't forget to multiply minimum data parallel size
dp_size *= self.min_dp_size
if not (ep_size in self.information):
self.information[ep_size] = MoeInfo(ep_size, dp_size)
return num_local_experts, self.information[ep_size]
def set_kernel_not_use(self):
self.use_kernel_optim = False
def reset_loss(self):
self.aux_loss = 0
def add_loss(self, loss):
self.aux_loss += loss
def get_loss(self):
return self.aux_loss

View File

@ -9,7 +9,6 @@ import torch
import torch.distributed as dist
from colossalai.constants import ALLOWED_MODES, INITIALIZER_MAPPING
from colossalai.context.config import Config
from colossalai.global_variables import moe_env
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.logging import get_dist_logger
from colossalai.registry import DIST_GROUP_INITIALIZER
@ -407,13 +406,6 @@ class ParallelContext:
# add this config to initialize later
pg_init.append(dict(type=INITIALIZER_MAPPING[tensor_parallel_mode.lower()], **tensor_parallel_cfg))
# initialization for moe environment
if parallel_config is not None and 'moe' in parallel_config:
param = parallel_config['moe']
assert 'size' in param, "Moe model parallel size should be given"
moe_env.setup(param['size'])
pg_init.append(dict(type=INITIALIZER_MAPPING['moe']))
# run initialization of different process groups
for initializer_cfg in pg_init:
cfg = initializer_cfg.copy()

View File

@ -147,15 +147,10 @@ def with_seed(func, parallel_mode: ParallelMode):
def moe_set_seed(seed):
if torch.cuda.is_available():
from colossalai.core import global_context as gpc
moe_mp_rank = gpc.get_local_rank(ParallelMode.MOE_MODEL)
moe_mp_seed = seed + moe_mp_rank
add_seed(ParallelMode.MOE_MODEL, moe_mp_seed)
global_rank = gpc.get_global_rank()
add_seed(ParallelMode.TENSOR, global_rank, True)
print(f"moe seed condition: {global_rank} with moe seed {moe_mp_seed}, ",
f"tensor seed {global_rank}",
flush=True)
diff_seed = seed + global_rank
add_seed(ParallelMode.TENSOR, diff_seed, True)
print(f"moe seed condition: {global_rank} with tensor seed {diff_seed}", flush=True)
def reset_seeds():

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context import ParallelContext
from colossalai.context import ParallelContext, MoeContext
global_context = ParallelContext.get_instance()
moe_context = MoeContext.get_instance()

View File

@ -1,12 +1,8 @@
#!/usr/bin/env python
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler
from ...context.parallel_mode import ParallelMode
from .utils import bucket_allreduce
@GRADIENT_HANDLER.register_module
@ -23,26 +19,4 @@ class DataParallelGradientHandler(BaseGradientHandler):
"""
# TODO: add memory buffer
if gpc.data_parallel_size > 1:
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in self._model.parameters():
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# param.main_grad = param.grad
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= gpc.get_world_size(ParallelMode.DATA)
dist.all_reduce(
coalesced, group=gpc.get_group(ParallelMode.DATA))
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)
bucket_allreduce(param_list=self._model.parameters(), group=gpc.get_group(ParallelMode.DATA))

View File

@ -1,10 +1,9 @@
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.core import global_context as gpc, moe_context as moe_env
from colossalai.registry import GRADIENT_HANDLER
from colossalai.global_variables import moe_env
from colossalai.utils.moe import get_moe_epsize_param_dict
from ._base_gradient_handler import BaseGradientHandler
from ...context.parallel_mode import ParallelMode
from .utils import bucket_allreduce
@GRADIENT_HANDLER.register_module
@ -21,41 +20,15 @@ class MoeGradientHandler(BaseGradientHandler):
Then running an all-reduce operation for all parameters in experts
across moe model parallel group
"""
moe_data = moe_env.data_parallel_size
global_data = gpc.data_parallel_size
if global_data > 1:
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in self._model.parameters():
if param.requires_grad and \
param.grad is not None and \
not hasattr(param, 'moe_param'):
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# param.main_grad = param.grad
param_dict = get_moe_epsize_param_dict(self._model)
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= gpc.get_world_size(ParallelMode.DATA)
# reduce gradients for all parameters in data parallelism
if 1 in param_dict:
bucket_allreduce(param_list=param_dict[1], group=gpc.get_group(ParallelMode.DATA))
dist.all_reduce(
coalesced, group=gpc.get_group(ParallelMode.DATA))
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)
if global_data > 1:
for param in self._model.parameters():
if not param.requires_grad or param.grad is None:
continue
if moe_data > 1 and hasattr(param, 'moe_param'):
param.grad.data /= moe_data
dist.all_reduce(param.grad.data,
group=gpc.get_group(ParallelMode.MOE_DATA))
for ep_size in param_dict:
if ep_size != 1 and ep_size != moe_env.world_size:
bucket_allreduce(param_list=param_dict[ep_size], group=moe_env.information[ep_size].dp_group)

View File

@ -1,14 +1,8 @@
#!/usr/bin/env python
from functools import total_ordering
import torch
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler
from ...context.parallel_mode import ParallelMode
import colossalai
from .utils import bucket_allreduce
@GRADIENT_HANDLER.register_module
@ -23,29 +17,5 @@ class SequenceParallelGradientHandler(BaseGradientHandler):
def handle_gradient(self):
"""A method running a all-reduce operation in a data parallel group.
"""
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in self._model.parameters():
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= gpc.get_world_size(ParallelMode.SEQUENCE_DP)
dist.all_reduce(
coalesced, group=gpc.get_group(ParallelMode.SEQUENCE_DP))
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)
if gpc.get_world_size(ParallelMode.SEQUENCE_DP) > 1:
bucket_allreduce(param_list=self._model.parameters(), group=gpc.get_group(ParallelMode.SEQUENCE_DP))

View File

@ -0,0 +1,29 @@
import torch.distributed as dist
import torch.nn as nn
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from typing import Iterable
def bucket_allreduce(param_list: Iterable[nn.Parameter], group=None):
# get communication world size
comm_size = dist.get_world_size(group)
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in param_list:
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= comm_size
dist.all_reduce(coalesced, group=group)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)

51
colossalai/utils/moe.py Normal file
View File

@ -0,0 +1,51 @@
import torch.nn as nn
import torch.distributed as dist
from colossalai.core import global_context as gpc, moe_context as moe_env
from colossalai.context import ParallelMode
from .common import is_using_ddp
from typing import Dict, List
def get_moe_epsize_param_dict(model: nn.Module) -> Dict[int, List[nn.Parameter]]:
"""Returns a parameter dictionary, the key of which is the expert parallel
size of every parameter. Since the parameters in data parallelism is replicated
in each GPU, we set their ep_size to 1.
:param model: A pyTorch nn.model from which we get dict
:type model: torch.nn.Module
"""
epsize_param_dict = dict()
for param in model.parameters():
if not hasattr(param, 'moe_info'):
ep_size = 1 # set ep_size to 1 for dp parameters
else:
ep_size = param.moe_info.ep_size
if ep_size not in epsize_param_dict:
epsize_param_dict[ep_size] = []
epsize_param_dict[ep_size].append(param)
return epsize_param_dict
def sync_moe_model_param(model: nn.Module):
"""Make sure model parameters are consistent in MoE parallel context
:param model: A pyTorch nn.model on whose parameters you check the consistency
:type model: torch.nn.Module
"""
if is_using_ddp():
param_dict = get_moe_epsize_param_dict(model)
# synchrosize the parameters whose dp_group is the whole world
if 1 in param_dict:
src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[0]
for param in param_dict[1]:
dist.broadcast(param, src=src_rank, group=gpc.get_group(ParallelMode.DATA))
for ep_size in param_dict:
# When ep_size = world_size, communication is not needed
if ep_size != 1 and ep_size != moe_env.world_size:
src_rank = dist.get_rank(moe_env.information[ep_size].ep_group)
for param in param_dict[ep_size]:
dist.broadcast(param, src=src_rank, group=param.moe_info.dp_group)

View File

@ -23,13 +23,13 @@ def check_equal(A, B, atol=1e-06):
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
moe_set_seed(42)
# torch.set_printoptions(precision=30)
torch.backends.cuda.matmul.allow_tf32 = False
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
torch.manual_seed(rs + local_rank)
moe_env.reset_loss()
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
# print(f"tokens:\n{tokens}")
router = Top2Router(1)
expert = Experts(nn.Identity, 4)
layer = MoeLayer(hidden_size, NUM_EXPERTS, router, expert)
@ -38,7 +38,6 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
layer.cuda_mode = False
old_out = layer(tokens)
# print(f"old output:\n{old_out}")
ech = old_out.shape
grad = torch.randn(ech, device=get_current_device())
@ -53,33 +52,27 @@ def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.f
layer.cuda_mode = True
new_out = layer(tokens)
# print(torch.max(torch.abs(old_out - new_out)))
if data_type == torch.float32:
check_equal(old_out, new_out)
else:
check_equal(old_out, new_out, 1e-2)
# print(f"forward functions passed")
# print(f"new output:\n{new_out}")
new_out.backward(grad)
n_tk_grad = tokens.grad.data.clone()
n_gt_grad = layer.gate.weight.grad.data.clone()
# print(torch.max(torch.abs(o_tk_grad - n_tk_grad)))
if data_type == torch.float32:
check_equal(o_tk_grad, n_tk_grad)
else:
check_equal(o_tk_grad, o_tk_grad, 1e-2)
# print(f"tokens gradient passed")
# print(torch.max(torch.abs(o_gt_grad - n_gt_grad)))
if data_type == torch.float32:
check_equal(o_gt_grad, n_gt_grad, 5e-05)
else:
check_equal(o_gt_grad, n_gt_grad, 2e-01)
# print(f"linear weight gradient passed")
@pytest.mark.skip(reason="MoE refactoring has not finished yet")
@pytest.mark.dist
@pytest.mark.parametrize("rs", [131])
@pytest.mark.parametrize("hidden_size", [32, 144])