mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] resnet block runtime apply (#1709)
* [autoparallel] resnet block runtime apply * seperate buffer and parameter in MemoryCost * polish code * add comments and todos * fix test issuepull/1713/head
parent
b0a23dc4fc
commit
845ff4a47a
@ -0,0 +1,172 @@
|
||||
from functools import partial
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from torch.fx import GraphModule
|
||||
import torch.nn as nn
|
||||
import pytest
|
||||
from colossalai import device
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_if_address_is_in_use
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.auto_parallel.tensor_shard.solver.graph_analysis import GraphAnalyser
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.fx.passes.experimental.adding_shape_consistency_pass_v2 import shape_consistency_pass, solution_annotatation_pass
|
||||
from colossalai.auto_parallel.tensor_shard.solver.options import SolverOptions
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor
|
||||
from colossalai.auto_parallel.tensor_shard.solver.cost_graph import CostGraph
|
||||
from copy import deepcopy
|
||||
from colossalai.auto_parallel.tensor_shard.solver.solver import Solver
|
||||
from torchvision.models import resnet34, resnet50
|
||||
from colossalai.auto_parallel.tensor_shard.constants import *
|
||||
from colossalai.testing import assert_close_loose, assert_close
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
|
||||
seed = 128
|
||||
cudnn_benchmark = False
|
||||
cudnn_deterministic = True
|
||||
|
||||
|
||||
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(
|
||||
in_planes,
|
||||
out_planes,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=dilation,
|
||||
groups=groups,
|
||||
bias=False,
|
||||
dilation=dilation,
|
||||
)
|
||||
|
||||
|
||||
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
||||
"""1x1 convolution"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
||||
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
||||
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
||||
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
||||
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
||||
|
||||
expansion: int = 4
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
inplanes: int,
|
||||
planes: int,
|
||||
stride: int = 1,
|
||||
downsample=None,
|
||||
groups: int = 1,
|
||||
base_width: int = 64,
|
||||
dilation: int = 1,
|
||||
norm_layer=None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
width = int(planes * (base_width / 64.0)) * groups
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = norm_layer(width)
|
||||
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
||||
self.bn2 = norm_layer(width)
|
||||
self.conv3 = conv1x1(width, planes * self.expansion)
|
||||
self.bn3 = norm_layer(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def check_apply_bottleneck(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
input = torch.rand(256, 64, 64, 64).cuda()
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=False)
|
||||
entire_shape = torch.Size((4, 4, 8, 8))
|
||||
|
||||
tracer = ColoTracer()
|
||||
model = Bottleneck(64, 64, 1, norm_layer=torch.nn.modules.batchnorm.BatchNorm2d).cuda()
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
|
||||
# %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
|
||||
# %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
|
||||
# %conv2 : [#users=1] = call_module[target=conv2](args = (%relu,), kwargs = {})
|
||||
# %bn2 : [#users=1] = call_module[target=bn2](args = (%conv2,), kwargs = {})
|
||||
# %relu_1 : [#users=1] = call_module[target=relu](args = (%bn2,), kwargs = {})
|
||||
# %conv3 : [#users=1] = call_module[target=conv3](args = (%relu_1,), kwargs = {})
|
||||
# %bn3 : [#users=1] = call_module[target=bn3](args = (%conv3,), kwargs = {})
|
||||
# %relu_2 : [#users=1] = call_module[target=relu](args = (%bn3,), kwargs = {})
|
||||
# return relu_2
|
||||
input_sample = {'x': torch.rand(256, 64, 224, 224).to('meta')}
|
||||
cuda_rng_state = torch.cuda.get_rng_state()
|
||||
origin_output = model(input)
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
gm.recompile()
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser)
|
||||
ret = solver.call_solver_serialized_args()
|
||||
solution = list(ret[0])
|
||||
print(solution)
|
||||
device_mesh.process_groups_dict = device_mesh.create_process_groups_for_logical_mesh()
|
||||
sharding_spec_dict, origin_spec_dict = solution_annotatation_pass(gm, solution, device_mesh)
|
||||
shape_consistency_pass(gm)
|
||||
gm.recompile()
|
||||
nodes = [node for node in gm.graph.nodes]
|
||||
# TODO: wrap the gm to avoid the influence of the user training code
|
||||
torch.cuda.set_rng_state(cuda_rng_state)
|
||||
output = gm(input, sharding_spec_dict, origin_spec_dict)
|
||||
assert output.shape == origin_output.shape
|
||||
assert output.equal(origin_output)
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_apply():
|
||||
world_size = 4
|
||||
run_func = partial(check_apply_bottleneck, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_apply()
|
Loading…
Reference in new issue