mirror of https://github.com/hpcaitech/ColossalAI
[Graph] building computing graph with ColoTensor, Linear only (#917)
parent
75d221918a
commit
845856ea29
|
@ -1,15 +1,14 @@
|
|||
import torch
|
||||
from colossalai.tensor.op_wrapper import colo_op_impl
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, \
|
||||
gather_forward_split_backward, reduce_grad
|
||||
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input, reduce_grad
|
||||
from colossalai.nn.layer.utils import divide
|
||||
from colossalai.core import global_context as gpc
|
||||
from packaging import version
|
||||
from colossalai.tensor import ComputePattern, TensorSpec, ComputePattern, ParallelAction, ColoTensor, ShardPattern
|
||||
from colossalai.tensor.graph import GraphOpNode, GraphGlobalEnv
|
||||
|
||||
|
||||
def colo_linear_1Drow(input_tensor: ColoTensor, weight: ColoTensor, bias:ColoTensor) -> ColoTensor:
|
||||
def colo_linear_1Drow(input_tensor: ColoTensor, weight: ColoTensor, bias: ColoTensor) -> ColoTensor:
|
||||
parallel_action = weight.shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow_Linear)
|
||||
# Input:S[1] x Weight:S[0] = Output:P
|
||||
# All-Reduce(Output) + bias = res
|
||||
|
@ -99,20 +98,32 @@ def colo_linear(types, args, kwargs, pg):
|
|||
if bias is not None and not isinstance(bias, ColoTensor):
|
||||
bias = ColoTensor.init_from_torch_tensor(bias)
|
||||
|
||||
# building the computing graph, inputs -> op
|
||||
if GraphGlobalEnv().graph_building:
|
||||
cur_op_node = GraphOpNode('linear', [weight, bias])
|
||||
cur_op_node.add_prev_tensor(input_tensor)
|
||||
|
||||
# Add communication logic before and after linear call.
|
||||
ret_tensor = None
|
||||
if not weight.has_spec(): # No Model Parallel Applied
|
||||
assert not bias.has_spec(), 'Invalid bias spec for native Linear op'
|
||||
input_tensor = input_tensor.torch_tensor()
|
||||
weight = weight.torch_tensor()
|
||||
bias = bias.torch_tensor()
|
||||
return ColoTensor.init_from_torch_tensor(torch.nn.functional.linear(input_tensor, weight, bias))
|
||||
ret_tensor = ColoTensor.init_from_torch_tensor(torch.nn.functional.linear(input_tensor, weight, bias))
|
||||
elif weight.shard_spec.num_action == 1: # Single Model Parallel Applied
|
||||
compute_patterns = weight.shard_spec.compute_patterns
|
||||
if ComputePattern.TP1DRow_Linear in compute_patterns:
|
||||
return colo_linear_1Drow(input_tensor, weight, bias)
|
||||
ret_tensor = colo_linear_1Drow(input_tensor, weight, bias)
|
||||
elif ComputePattern.TP1DCol_Linear in compute_patterns:
|
||||
return colo_linear_1Dcol(input_tensor, weight, bias)
|
||||
ret_tensor = colo_linear_1Dcol(input_tensor, weight, bias)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# building the computing graph, op -> output
|
||||
if GraphGlobalEnv().graph_building:
|
||||
cur_op_node.add_post_tensor(ret_tensor)
|
||||
|
||||
return ret_tensor
|
||||
|
|
|
@ -38,6 +38,7 @@ class ColoTensor(object):
|
|||
self._shard_spec = shard_spec
|
||||
self._shard_pattern = ShardPattern.NA
|
||||
self._type = TensorType.NONMODEL
|
||||
self._graph_node = None
|
||||
|
||||
def __getitem__(self, key):
|
||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor()[key])
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
from .graph_node import GraphNode, GraphOpNode, GraphContext, GraphGlobalEnv
|
||||
|
||||
__all__ = ['GraphNode', 'GraphOpNode', 'GraphContext', 'GraphGlobalEnv']
|
|
@ -0,0 +1,97 @@
|
|||
from colossalai.tensor import ColoTensor
|
||||
from colossalai.context.singleton_meta import SingletonMeta
|
||||
|
||||
|
||||
class GraphGlobalEnv(metaclass=SingletonMeta):
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.graph_building = False
|
||||
self.graph_node_list = []
|
||||
self.node_id = -1
|
||||
|
||||
def get_node_id(self):
|
||||
self.node_id += 1
|
||||
return self.node_id
|
||||
|
||||
def add_graph_node(self, node):
|
||||
self.graph_node_list.append(node)
|
||||
|
||||
|
||||
class GraphContext():
|
||||
"""
|
||||
|
||||
Building the computing graph under the context
|
||||
|
||||
>>> with GraphContext():
|
||||
>>> output = model(colo_input_tensor)
|
||||
"""
|
||||
graph_nodes = []
|
||||
|
||||
def __enter__(self):
|
||||
GraphGlobalEnv().graph_building = True
|
||||
GraphGlobalEnv().graph_node_list = []
|
||||
|
||||
def __exit__(self, *exc_info):
|
||||
GraphGlobalEnv().graph_building = False
|
||||
GraphGlobalEnv().node_id = -1
|
||||
self.graph_nodes = GraphGlobalEnv().graph_node_list
|
||||
|
||||
|
||||
class GraphNode(object):
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.prev_nodes = []
|
||||
self.post_nodes = []
|
||||
self.id = GraphGlobalEnv().get_node_id()
|
||||
|
||||
def add_prev_node(self, node):
|
||||
if GraphGlobalEnv().graph_building:
|
||||
self.prev_nodes.append(node)
|
||||
|
||||
def add_post_node(self, node):
|
||||
if GraphGlobalEnv().graph_building:
|
||||
self.post_nodes.append(node)
|
||||
|
||||
def post_node_empty(self) -> bool:
|
||||
return len(self.post_nodes) == 0
|
||||
|
||||
|
||||
class GraphOpNode(GraphNode):
|
||||
|
||||
def __init__(self, op_type, param_list) -> None:
|
||||
super().__init__()
|
||||
self._op_type = op_type
|
||||
self._param_list = param_list
|
||||
GraphGlobalEnv().add_graph_node(self)
|
||||
|
||||
def add_prev_tensor(self, colo_tensor: ColoTensor):
|
||||
r"""
|
||||
Link the current graph op node to previous graph op.
|
||||
Op1 <- Activation (colo_tensor) Op2
|
||||
Op1 <- Op2
|
||||
"""
|
||||
if GraphGlobalEnv().graph_building:
|
||||
assert isinstance(colo_tensor, ColoTensor)
|
||||
if colo_tensor._graph_node is None:
|
||||
colo_tensor._graph_node = GraphNode()
|
||||
|
||||
prev_ops = colo_tensor._graph_node.prev_nodes
|
||||
for op_node in prev_ops:
|
||||
self.add_prev_node(op_node)
|
||||
op_node.add_post_node(self)
|
||||
|
||||
def add_post_tensor(self, colo_tensor: ColoTensor):
|
||||
"""
|
||||
Op <- Activation (colo_tensor)
|
||||
"""
|
||||
if GraphGlobalEnv().graph_building:
|
||||
assert isinstance(colo_tensor, ColoTensor)
|
||||
if colo_tensor._graph_node is None:
|
||||
colo_tensor._graph_node = GraphNode()
|
||||
|
||||
colo_tensor._graph_node.add_prev_node(self)
|
||||
|
||||
def print(self):
|
||||
print(
|
||||
f'GraphOpNode {self._op_type} {self.id}, post nodes {[node.id for node in self.post_nodes]}, prev node number {[node.id for node in self.prev_nodes]}'
|
||||
)
|
|
@ -0,0 +1,81 @@
|
|||
from torch import nn
|
||||
import torch
|
||||
from colossalai.tensor import ColoTensor
|
||||
from colossalai.tensor.graph import GraphContext
|
||||
import gc
|
||||
|
||||
|
||||
class SimpleNet(nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.proj1 = nn.Linear(4, 8)
|
||||
self.proj2 = nn.Linear(8, 4)
|
||||
self.proj3 = nn.Linear(4, 4)
|
||||
self.proj4 = nn.Linear(4, 4)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj1(x)
|
||||
x = self.proj2(x)
|
||||
x = self.proj3(x)
|
||||
x = self.proj4(x)
|
||||
return x
|
||||
|
||||
|
||||
def _visit_graph(start_node):
|
||||
if start_node is None:
|
||||
return
|
||||
|
||||
start_node.print()
|
||||
|
||||
post_node_list = start_node.post_nodes
|
||||
for node in post_node_list:
|
||||
_visit_graph(node)
|
||||
|
||||
|
||||
def _get_tensors():
|
||||
for obj in gc.get_objects():
|
||||
try:
|
||||
if torch.is_tensor(obj):
|
||||
yield obj
|
||||
except Exception as e:
|
||||
print('A trivial exception occured: {}'.format(e))
|
||||
|
||||
|
||||
def _count_tensors():
|
||||
cnt = 0
|
||||
for t in _get_tensors():
|
||||
cnt += 1
|
||||
return cnt
|
||||
|
||||
|
||||
def count_tensors(use_colossal):
|
||||
model = SimpleNet()
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
if use_colossal:
|
||||
colo_input = ColoTensor.init_from_torch_tensor(torch.randn(4))
|
||||
graph_ctx = GraphContext()
|
||||
with graph_ctx:
|
||||
output = model(colo_input)
|
||||
output = model(colo_input)
|
||||
ret = _count_tensors()
|
||||
|
||||
_visit_graph(graph_ctx.graph_nodes[0])
|
||||
|
||||
del graph_ctx
|
||||
return ret
|
||||
else:
|
||||
input_t = torch.randn(4)
|
||||
output = model(input_t)
|
||||
output = model(input_t)
|
||||
return _count_tensors()
|
||||
|
||||
|
||||
def test_check_activation_tensors():
|
||||
assert count_tensors(False) == count_tensors(True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
count_tensors(True)
|
|
@ -26,7 +26,7 @@ from dataclasses import fields
|
|||
def _post_init_colo(self):
|
||||
class_fields = fields(self)
|
||||
# Safety and consistency checks
|
||||
if not len(class_fields):
|
||||
if len(class_fields) == 0:
|
||||
raise ValueError(f"{self.__class__.__name__} has no fields.")
|
||||
if not all(field.default is None for field in class_fields[1:]):
|
||||
raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")
|
||||
|
@ -361,7 +361,7 @@ def run_dist(rank, world_size, port):
|
|||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
for name in ['simple_net']:
|
||||
run_1d_row_tp(name)
|
||||
for name in ['bert', 'simple_net']:
|
||||
for name in ['bert', 'simple_net']:
|
||||
run_1d_hybrid_tp(name)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue