[Tensor] add 1d vocab loss (#918)

* add 1d vocab loss

* polish
pull/920/head
Ziyue Jiang 2022-05-07 15:49:14 +08:00 committed by GitHub
parent dfaff4e243
commit 75d221918a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 37 additions and 13 deletions

View File

@ -1,7 +1,8 @@
from colossalai.tensor.spec import ShardPattern
import torch
from colossalai.tensor.op_wrapper import colo_op_impl
from colossalai.tensor import ColoTensor
from colossalai.nn.loss.loss_1d import VocabParallelCrossEntropyLoss1D
@colo_op_impl(torch.nn.functional.cross_entropy)
def colo_cross_entropy(types, args=(), kwargs=None, pg=None):
@ -12,18 +13,29 @@ def colo_cross_entropy(types, args=(), kwargs=None, pg=None):
if arg_num > 1:
target = args[1]
if arg_num > 2:
weight = args[3]
weight = args[2]
if 'input' in kwargs:
input_tensor = kwargs['input']
input_tensor = kwargs.pop('input')
if 'target' in kwargs:
target = kwargs['target']
target = kwargs.pop('target')
if 'weight' in kwargs:
weight = kwargs['weight']
weight = kwargs.pop('weight')
if isinstance(input_tensor, ColoTensor):
input_tensor = input_tensor.torch_tensor()
if not isinstance(input_tensor, ColoTensor):
input_tensor = ColoTensor.init_from_torch_tensor(input_tensor)
if isinstance(target, ColoTensor):
target = target.torch_tensor()
return ColoTensor.init_from_torch_tensor(torch.nn.functional.cross_entropy(input_tensor, target, weight))
if input_tensor.is_gathered(): # Input is gathered
# TODO(jzy) Shall we make the result of loss function a ColoTensor?
return ColoTensor.init_from_torch_tensor(torch.nn.functional.cross_entropy(
input_tensor.torch_tensor(), target, weight))
elif input_tensor.has_spec() and input_tensor.shard_spec.num_action == 1: # Single Model Parallel Applied
if input_tensor.shard_pattern == ShardPattern.Col:
return ColoTensor.init_from_torch_tensor(
VocabParallelCrossEntropyLoss1D()(input_tensor.torch_tensor(), target))
else:
raise NotImplementedError
else:
raise NotImplementedError

View File

@ -17,6 +17,7 @@ class SimpleNet(CheckpointModule):
self.ln1 = nn.LayerNorm(8)
self.proj2 = nn.Linear(8, 4)
self.ln2 = nn.LayerNorm(4)
self.classifier = nn.Linear(4, 4)
def forward(self, x):
x = self.embed(x)
@ -24,6 +25,7 @@ class SimpleNet(CheckpointModule):
x = self.ln1(x)
x = self.proj2(x)
x = self.ln2(x)
x = self.classifier(x)
return x
@ -31,8 +33,8 @@ class SimpleNet(CheckpointModule):
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.randint(low=0, high=20, size=(16,20), device=get_current_device())
label = torch.randint(low=0, high=2, size=(16,4), device=get_current_device())
data = torch.randint(low=0, high=20, size=(16,), device=get_current_device())
label = torch.randint(low=0, high=2, size=(16,), device=get_current_device())
return data, label

View File

@ -144,10 +144,18 @@ def run_1d_hybrid_tp(model_name):
parallel_action_list_col = [
ParallelAction(priority=1,
compute_pattern=ComputePattern.TP1DCol_Linear,
parallel_mode=ParallelMode.PARALLEL_1D)
parallel_mode=ParallelMode.PARALLEL_1D),
]
spec_col = TensorSpec(parallel_action_list_col)
parallel_action_list_classifier_col = [
ParallelAction(priority=1,
compute_pattern=ComputePattern.TP1DCol_Linear,
parallel_mode=ParallelMode.PARALLEL_1D,
gather_out=False),
]
spec_classifier_col = TensorSpec(parallel_action_list_classifier_col)
parallel_action_list_embedding_col = [
ParallelAction(priority=1,
compute_pattern=ComputePattern.TP1DCol_Embedding,
@ -158,12 +166,14 @@ def run_1d_hybrid_tp(model_name):
for name, p in model.colo_named_parameters():
if not isinstance(p, ColoTensor):
continue
if 'embed' in name and 'weight' in name:
p.set_spec(spec_embedding_col)
if 'proj1' in name and ('weight' in name or 'bias' in name):
p.set_spec(spec_col)
if 'proj2' in name and 'weight' in name:
p.set_spec(spec_row)
if 'embed' in name and 'weight' in name:
p.set_spec(spec_embedding_col)
if 'classifier' in name and ('weight' in name or 'bias' in name):
p.set_spec(spec_classifier_col)
set_seed(1)
if rank == 0: