mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] fix zero optim save/load state dict (#1381)
parent
b6fd165f66
commit
828b9e5e0d
|
@ -104,8 +104,8 @@ class ProcessGroup:
|
||||||
def set_cpu_groups(self):
|
def set_cpu_groups(self):
|
||||||
if self.has_cpu_groups:
|
if self.has_cpu_groups:
|
||||||
return
|
return
|
||||||
self.logger.info(
|
# self.logger.info(
|
||||||
f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
# f'{self._rank} Gloo initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
||||||
PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
||||||
PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
PYTORCHPGDICT_.get(self._dp_rank_list, 'gloo')
|
||||||
self._has_cpu_groups = True
|
self._has_cpu_groups = True
|
||||||
|
|
|
@ -8,6 +8,9 @@ from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.nn.optimizer import ColossalaiOptimizer
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||||||
from colossalai.utils import get_current_device, disposable
|
from colossalai.utils import get_current_device, disposable
|
||||||
|
from collections import defaultdict, abc as container_abcs
|
||||||
|
from copy import deepcopy
|
||||||
|
from itertools import chain
|
||||||
|
|
||||||
|
|
||||||
class OptimState(Enum):
|
class OptimState(Enum):
|
||||||
|
@ -191,22 +194,105 @@ class ZeroOptimizer(ColossalaiOptimizer):
|
||||||
self.chunk_manager.add_extern_static_tensor(val)
|
self.chunk_manager.add_extern_static_tensor(val)
|
||||||
|
|
||||||
def state_dict(self):
|
def state_dict(self):
|
||||||
|
r"""Returns the state of the optimizer as a :class:`dict`. For DP rank != 0, this function returns None.
|
||||||
|
|
||||||
|
It contains two entries:
|
||||||
|
|
||||||
|
* state - a dict holding current optimization state. Its content
|
||||||
|
differs between optimizer classes.
|
||||||
|
* param_groups - a list containing all parameter groups where each
|
||||||
|
parameter group is a dict
|
||||||
|
"""
|
||||||
|
is_rank_0 = self.chunk_manager.process_group.dp_local_rank() == 0
|
||||||
|
if not self.chunk_manager.enable_distributed_storage and not is_rank_0:
|
||||||
|
return
|
||||||
optim_state_dict = super().state_dict()
|
optim_state_dict = super().state_dict()
|
||||||
scaler_state_dict = self.grad_scaler.state_dict()
|
scaler_state_dict = self.grad_scaler.state_dict()
|
||||||
optim_state_dict['scaler'] = scaler_state_dict
|
optim_state_dict['scaler'] = scaler_state_dict
|
||||||
|
if not self.chunk_manager.enable_distributed_storage:
|
||||||
|
return optim_state_dict
|
||||||
|
local_state = {k: convert_state_dict_to_cpu(v) for k, v in optim_state_dict['state'].items() if len(v) > 0}
|
||||||
|
if not self.chunk_manager.process_group.has_cpu_groups:
|
||||||
|
self.chunk_manager.process_group.set_cpu_groups()
|
||||||
|
dst_rank = self.chunk_manager.process_group.dp_rank_list()[0]
|
||||||
|
output = [None for _ in range(self.chunk_manager.process_group.dp_world_size())]
|
||||||
|
dist.gather_object(local_state,
|
||||||
|
output if self.chunk_manager.process_group.dp_local_rank() == 0 else None,
|
||||||
|
dst=dst_rank,
|
||||||
|
group=self.chunk_manager.process_group.cpu_dp_process_group())
|
||||||
|
if not is_rank_0:
|
||||||
|
return
|
||||||
|
for state in output:
|
||||||
|
optim_state_dict['state'].update(state)
|
||||||
return optim_state_dict
|
return optim_state_dict
|
||||||
|
|
||||||
def load_state_dict(self, *args, **kwargs):
|
def load_state_dict(self, state_dict):
|
||||||
if 'scaler' not in args[0]:
|
r"""Loads the optimizer state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (dict): optimizer state. Should be an object returned
|
||||||
|
from a call to :meth:`state_dict`.
|
||||||
|
"""
|
||||||
|
if 'scaler' not in state_dict:
|
||||||
self._logger.warning('Missing scaler when loading optimizer state dict', ranks=[0])
|
self._logger.warning('Missing scaler when loading optimizer state dict', ranks=[0])
|
||||||
else:
|
else:
|
||||||
scaler_state_dict = args[0].pop('scaler')
|
self.grad_scaler.load_state_dict(deepcopy(state_dict['scaler']))
|
||||||
self.grad_scaler.load_state_dict(scaler_state_dict)
|
|
||||||
super().load_state_dict(*args, **kwargs)
|
# Validate the state_dict
|
||||||
for group in self.optim.param_groups:
|
groups = self.param_groups
|
||||||
for p in group['params']:
|
saved_groups = deepcopy(state_dict['param_groups'])
|
||||||
state = self.optim.state[p]
|
|
||||||
for k, v in state.items():
|
if len(groups) != len(saved_groups):
|
||||||
if isinstance(v, torch.Tensor):
|
raise ValueError("loaded state dict has a different number of "
|
||||||
state[k] = v.to(dtype=self.fp16_param_to_fp32_param[p].dtype,
|
"parameter groups")
|
||||||
device=self.fp16_param_to_fp32_param[p].device)
|
param_lens = (len(g['params']) for g in groups)
|
||||||
|
saved_lens = (len(g['params']) for g in saved_groups)
|
||||||
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
||||||
|
raise ValueError("loaded state dict contains a parameter group "
|
||||||
|
"that doesn't match the size of optimizer's group")
|
||||||
|
|
||||||
|
# Update the state
|
||||||
|
id_map = {
|
||||||
|
old_id: p for old_id, p in zip(chain.from_iterable((g['params'] for g in saved_groups
|
||||||
|
)), chain.from_iterable((g['params'] for g in groups)))
|
||||||
|
}
|
||||||
|
|
||||||
|
def cast(param, value):
|
||||||
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
||||||
|
if isinstance(value, torch.Tensor):
|
||||||
|
# Floating-point types are a bit special here. They are the only ones
|
||||||
|
# that are assumed to always match the type of params.
|
||||||
|
if param.is_floating_point():
|
||||||
|
value = value.to(param.dtype)
|
||||||
|
value = value.to(param.device)
|
||||||
|
return value
|
||||||
|
elif isinstance(value, dict):
|
||||||
|
return {k: cast(param, v) for k, v in value.items()}
|
||||||
|
elif isinstance(value, container_abcs.Iterable):
|
||||||
|
return type(value)(cast(param, v) for v in value)
|
||||||
|
else:
|
||||||
|
return value
|
||||||
|
|
||||||
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
||||||
|
# State that is not assigned to params is copied as is (needed for
|
||||||
|
# backward compatibility).
|
||||||
|
state = defaultdict(dict)
|
||||||
|
for k, v in state_dict['state'].items():
|
||||||
|
if k in id_map:
|
||||||
|
param = self.fp16_param_to_fp32_param[id_map[k]]
|
||||||
|
if param.storage().size() > 0:
|
||||||
|
state[param] = cast(param, deepcopy(v))
|
||||||
|
else:
|
||||||
|
state[k] = deepcopy(v)
|
||||||
|
|
||||||
|
# Update parameter groups, setting their 'params' value
|
||||||
|
def update_group(group, new_group):
|
||||||
|
new_group['params'] = group['params']
|
||||||
|
return new_group
|
||||||
|
|
||||||
|
param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)]
|
||||||
|
self.__setstate__({'state': state, 'param_groups': param_groups})
|
||||||
|
|
||||||
|
|
||||||
|
def convert_state_dict_to_cpu(state: Dict[str, torch.Tensor]):
|
||||||
|
return {k: v.cpu() if isinstance(v, torch.Tensor) else v for k, v in state.items()}
|
||||||
|
|
|
@ -1,100 +1,99 @@
|
||||||
import pytest
|
import pytest
|
||||||
import colossalai
|
import colossalai
|
||||||
import torch
|
import torch
|
||||||
from colossalai.context.parallel_mode import ParallelMode
|
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
from colossalai.testing import rerun_if_address_is_in_use
|
from colossalai.testing import rerun_if_address_is_in_use
|
||||||
from colossalai.utils.cuda import get_current_device
|
from colossalai.utils.cuda import get_current_device
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
from colossalai.core import global_context as gpc
|
from colossalai.gemini import ChunkManager
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from tests.test_tensor.common_utils import set_seed
|
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
from colossalai.nn.parallel.data_parallel import ZeroDDP
|
from colossalai.nn.parallel import ZeroDDP
|
||||||
from colossalai.gemini import ChunkManager, GeminiManager
|
|
||||||
from colossalai.testing import parameterize
|
|
||||||
from colossalai.nn.optimizer import HybridAdam
|
from colossalai.nn.optimizer import HybridAdam
|
||||||
from colossalai.zero import ZeroOptimizer
|
from colossalai.zero import ZeroOptimizer
|
||||||
|
from colossalai.testing import parameterize
|
||||||
|
from colossalai.gemini.gemini_mgr import GeminiManager
|
||||||
from colossalai.tensor import ProcessGroup
|
from colossalai.tensor import ProcessGroup
|
||||||
|
|
||||||
|
|
||||||
def init_zero(model, use_chunk, use_zero, placement_policy):
|
def check_state(s1, s2):
|
||||||
|
for v1, v2 in zip(s1.values(), s2.values()):
|
||||||
|
if isinstance(v1, torch.Tensor):
|
||||||
|
v1 = v1.to(v2.device)
|
||||||
|
assert torch.equal(v1, v2), f'{torch.sum((v1-v2).abs())}'
|
||||||
|
else:
|
||||||
|
assert v1 == v2
|
||||||
|
|
||||||
|
|
||||||
|
def check_load_state_dict(optim, torch_optim):
|
||||||
|
for group, torch_group in zip(optim.optim.param_groups, torch_optim.param_groups):
|
||||||
|
for p, torch_p in zip(group['params'], torch_group['params']):
|
||||||
|
state = optim.optim.state[p]
|
||||||
|
torch_state = torch_optim.state[torch_p]
|
||||||
|
if p.storage().size() == 0:
|
||||||
|
assert len(state) == 0
|
||||||
|
check_state(state, torch_state)
|
||||||
|
|
||||||
|
|
||||||
|
def check_state_dict(state_dict, torch_state_dict):
|
||||||
|
for (k1, s1), (k2, s2) in zip(state_dict['state'].items(), torch_state_dict['state'].items()):
|
||||||
|
assert k1 == k2
|
||||||
|
check_state(s1, s2)
|
||||||
|
|
||||||
|
|
||||||
|
@parameterize('use_chunk', [False, True])
|
||||||
|
@parameterize('use_zero', [False, True])
|
||||||
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto'])
|
||||||
|
def run_zero_optim_state_dict(use_chunk, use_zero, placement_policy):
|
||||||
|
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||||
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
||||||
|
|
||||||
|
with ColoInitContext(device=get_current_device()):
|
||||||
|
model = model_builder()
|
||||||
|
model = model.cuda()
|
||||||
|
torch_model = model_builder().cuda()
|
||||||
|
|
||||||
pg = ProcessGroup()
|
pg = ProcessGroup()
|
||||||
|
|
||||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||||
chunk_manager = ChunkManager(chunk_size,
|
chunk_manager = ChunkManager(chunk_size,
|
||||||
pg,
|
pg,
|
||||||
enable_distributed_storage=use_zero,
|
enable_distributed_storage=use_zero,
|
||||||
init_device=GeminiManager.get_default_device(placement_policy))
|
init_device=GeminiManager.get_default_device(placement_policy))
|
||||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||||
return ZeroDDP(model, gemini_manager)
|
model = ZeroDDP(model, gemini_manager)
|
||||||
|
|
||||||
|
|
||||||
def run_step(model, optim, criterion, data, label):
|
|
||||||
optim.zero_grad()
|
|
||||||
logits = model(data)
|
|
||||||
loss = criterion(logits, label)
|
|
||||||
optim.backward(loss)
|
|
||||||
optim.step()
|
|
||||||
|
|
||||||
|
|
||||||
def check_state_dict_eq(state_dict, other):
|
|
||||||
for p, state in state_dict['state'].items():
|
|
||||||
other_state = other['state'][p]
|
|
||||||
for k, v in state.items():
|
|
||||||
if isinstance(v, torch.Tensor):
|
|
||||||
assert torch.allclose(v, other_state[k], atol=1e-3), f'{v} vs {other_state[k]}'
|
|
||||||
else:
|
|
||||||
assert v == other_state[k]
|
|
||||||
|
|
||||||
|
|
||||||
@parameterize('use_chunk', [False, True])
|
|
||||||
@parameterize('use_zero', [False, True])
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
|
||||||
def run_nested_model(use_chunk, use_zero, placement_policy):
|
|
||||||
get_components_func = non_distributed_component_funcs.get_callable('nested_model')
|
|
||||||
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
||||||
|
|
||||||
set_seed(42)
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
|
||||||
model = model_builder()
|
|
||||||
set_seed(42)
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
|
||||||
model_copy = model_builder()
|
|
||||||
model = init_zero(model, use_chunk, use_zero, placement_policy)
|
|
||||||
model_copy = init_zero(model_copy, use_chunk, use_zero, placement_policy)
|
|
||||||
|
|
||||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||||
optim = ZeroOptimizer(optim, model, initial_scale=32)
|
optim = ZeroOptimizer(optim, model, initial_scale=1)
|
||||||
optim_copy = HybridAdam(model_copy.parameters(), lr=1e-3)
|
|
||||||
optim_copy = ZeroOptimizer(optim_copy, model_copy, initial_scale=32)
|
|
||||||
|
|
||||||
model.train()
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
||||||
model_copy.train()
|
|
||||||
set_seed(gpc.get_local_rank(ParallelMode.DATA))
|
|
||||||
data_iter = iter(train_dataloader)
|
|
||||||
|
|
||||||
data, label = map(lambda x: x.cuda(), next(data_iter))
|
for p in torch_model.parameters():
|
||||||
run_step(model, optim, criterion, data, label)
|
p.grad = torch.rand_like(p)
|
||||||
optim_copy.load_state_dict(optim.state_dict())
|
|
||||||
check_state_dict_eq(optim.state_dict(), optim_copy.state_dict())
|
|
||||||
|
|
||||||
data, label = map(lambda x: x.cuda(), next(data_iter))
|
torch_optim.step()
|
||||||
run_step(model_copy, optim_copy, criterion, data, label)
|
torch_state_dict = torch_optim.state_dict()
|
||||||
|
optim.load_state_dict(torch_state_dict)
|
||||||
|
check_load_state_dict(optim, torch_optim)
|
||||||
|
|
||||||
|
state_dict = optim.state_dict()
|
||||||
|
if pg.rank() == 0:
|
||||||
|
check_state_dict(state_dict, torch_state_dict)
|
||||||
|
|
||||||
|
|
||||||
def run_dist(rank, world_size, port):
|
def run_dist(rank, world_size, port):
|
||||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
config = {}
|
||||||
run_nested_model()
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
run_zero_optim_state_dict()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 2])
|
@pytest.mark.parametrize('world_size', [1, 2])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_zero_optim_state_dist(world_size):
|
def test_zero_optim_state_dict(world_size):
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
mp.spawn(run_func, nprocs=world_size)
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_zero_optim_state_dist(2)
|
test_zero_optim_state_dict(2)
|
||||||
|
|
Loading…
Reference in New Issue