pull/5326/head
Jianghai 2024-01-26 15:02:12 +08:00 committed by GitHub
parent 4f28cb43c0
commit 7ddd8b37f0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 149 additions and 75 deletions

View File

@ -136,7 +136,7 @@ def fused_rotary_embedding(
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0)
BLOCK_HEAD = 4
BLOCK_SIZE = 16
BLOCK_SIZE = 8
cumsum_lens = torch.cumsum(lengths, dim=0)
grid = (triton.cdiv(q_head_num, BLOCK_HEAD), triton.cdiv(q_total_tokens, BLOCK_SIZE), BLOCK_SIZE)

View File

@ -2,6 +2,22 @@ import torch
import triton
import triton.language as tl
"""
# Base autotune if needed
@triton.autotune(
configs=[
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=4),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=16),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=32),
triton.Config({'BLOCK_HEAD':16,"BLOCK_TOKENS":16,},num_warps=4),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":16,},num_warps=8),
],
key=['HEAD_DIM','q_total_tokens','Q_HEAD_NUM']
)
"""
@triton.jit
def rotary_embedding_kernel(
@ -26,43 +42,53 @@ def rotary_embedding_kernel(
block_head_index = tl.program_id(0)
block_token_index = tl.program_id(1)
rotary_data = q
HEAD_NUM = Q_HEAD_NUM
head_stride = q_head_stride
token_stride = q_token_stride
if block_token_index * BLOCK_TOKENS >= q_total_tokens:
block_token_index = block_token_index - tl.cdiv(q_total_tokens, BLOCK_TOKENS)
rotary_data = k
HEAD_NUM = K_HEAD_NUM
head_stride = k_head_stride
token_stride = k_token_stride
tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_data0 = (
tokens_range[:, None, None] * token_stride
+ head_range[None, :, None] * head_stride
off_q0 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_data1 = (
tokens_range[:, None, None] * token_stride
+ head_range[None, :, None] * head_stride
off_q1 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
off_k0 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_k1 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
loaded_data0 = tl.load(
rotary_data + off_data0,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
loaded_q0 = tl.load(
q + off_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_data1 = tl.load(
rotary_data + off_data1,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
loaded_q1 = tl.load(
q + off_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k0 = tl.load(
k + off_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k1 = tl.load(
k + off_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
@ -71,19 +97,32 @@ def rotary_embedding_kernel(
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
out0 = loaded_data0 * loaded_cos[:, None, :] - loaded_data1 * loaded_sin[:, None, :]
out1 = loaded_data0 * loaded_sin[:, None, :] + loaded_data1 * loaded_cos[:, None, :]
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
# concat
tl.store(
rotary_data + off_data0,
out0,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
q + off_q0,
out_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
rotary_data + off_data1,
out1,
mask=((head_range[None, :, None] < HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
q + off_q1,
out_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k0,
out_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k1,
out_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
@ -105,11 +144,13 @@ def rotary_embedding(
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0)
BLOCK_HEAD = 4
BLOCK_TOKENS = 8
grid = (triton.cdiv(q_head_num, BLOCK_HEAD), 2 * triton.cdiv(q_total_tokens, BLOCK_TOKENS))
BLOCK_TOKENS = 4
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
if head_dim >= 128:
num_warps = 8
if head_dim >= 256:
num_warps = 32
elif head_dim >= 128:
num_warps = 16
else:
num_warps = 4
@ -144,7 +185,6 @@ def rotary_embedding(
BLOCK_HEAD=BLOCK_HEAD,
BLOCK_TOKENS=BLOCK_TOKENS,
num_warps=num_warps,
num_stages=1,
)
return

View File

@ -5,9 +5,11 @@ import triton.language as tl
@triton.jit
def prefill_cache_kernel(
CaChe,
cos_cache,
sin_cache,
cumsum_lengths,
output,
cos_output,
sin_output,
cache_stride,
hidden_stride,
total_length,
@ -22,15 +24,31 @@ def prefill_cache_kernel(
# original seq_idx and pos
cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS))
ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0))
_cache = tl.load(CaChe + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride)
tl.store(output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, _cache, mask=idx < total_length)
cos_cache_part = tl.load(
cos_cache + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, mask=idx < total_length
)
sin_cache_part = tl.load(
sin_cache + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, mask=idx < total_length
)
tl.store(
cos_output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride,
cos_cache_part,
mask=idx < total_length,
)
tl.store(
sin_output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride,
sin_cache_part,
mask=idx < total_length,
)
@triton.jit
def decoding_cache_kernel(
CaChe,
cos_cache,
sin_cache,
lengths,
output,
cos_output,
sin_output,
cache_stride,
hidden_stride,
HIDDEN_DIM: tl.constexpr,
@ -39,16 +57,28 @@ def decoding_cache_kernel(
):
idx = tl.program_id(0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
ori_seq_idx = tl.load(lengths + idx, mask=(idx < NUM_SEQS), other=None) # [BLOCK_SIZE,]
_cache = tl.load(CaChe + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride)
cos_cache_part = tl.load(
cos_cache + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride,
mask=idx[:, None] < NUM_SEQS,
)
sin_cache_part = tl.load(
sin_cache + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride,
mask=idx[:, None] < NUM_SEQS,
)
tl.store(
output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
_cache,
cos_output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
cos_cache_part,
mask=idx[:, None] < NUM_SEQS,
)
tl.store(
sin_output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
sin_cache_part,
mask=idx[:, None] < NUM_SEQS,
)
@torch.no_grad()
def get_xine_cache(lengths: torch.Tensor, cache: torch.Tensor, is_prompts: bool = False):
def get_xine_cache(lengths: torch.Tensor, cos_cache: torch.Tensor, sin_cache: torch.Tensor, is_prompts: bool = False):
"""
Transform cos/sin cache into no pad sequence, with two different modes.
Args:
@ -60,28 +90,33 @@ def get_xine_cache(lengths: torch.Tensor, cache: torch.Tensor, is_prompts: bool
For decoding mode:
cos/sin cache is only needed for the last token.
"""
_, hidden_dim = cache.shape
assert cos_cache.shape[1] == sin_cache.shape[1]
_, hidden_dim = cos_cache.shape
num_seqs = lengths.numel()
BLOCK_SIZE = 16
if hidden_dim >= 128:
if hidden_dim >= 256:
num_warps = 16
elif hidden_dim >= 128:
num_warps = 8
else:
num_warps = 4
cache_stride = cache.stride(0)
hidden_stride = cache.stride(1)
cache_stride = cos_cache.stride(0)
hidden_stride = cos_cache.stride(1)
if is_prompts:
BLOCK_SIZE = 16
total_length = lengths.sum().item()
cumsum_lens = torch.cumsum(lengths, dim=0)
output = torch.empty((total_length, hidden_dim), dtype=cache.dtype, device=cache.device)
cos_output = torch.empty((total_length, hidden_dim), dtype=cos_cache.dtype, device=cos_cache.device)
sin_output = torch.empty((total_length, hidden_dim), dtype=sin_cache.dtype, device=sin_cache.device)
grid = (triton.cdiv(total_length, BLOCK_SIZE), BLOCK_SIZE)
prefill_cache_kernel[grid](
cache,
cos_cache,
sin_cache,
cumsum_lens,
output,
cos_output,
sin_output,
cache_stride,
hidden_stride,
total_length,
@ -91,14 +126,17 @@ def get_xine_cache(lengths: torch.Tensor, cache: torch.Tensor, is_prompts: bool
num_warps=num_warps,
)
else:
# BUG: get memory access error whe using a deepcopy lengths to replace lengths
BLOCK_SIZE = 4
nlengths = torch.as_tensor(lengths) - 1
output = torch.empty((num_seqs, hidden_dim), dtype=cache.dtype, device=cache.device)
cos_output = torch.empty((num_seqs, hidden_dim), dtype=cos_cache.dtype, device=cos_cache.device)
sin_output = torch.empty((num_seqs, hidden_dim), dtype=sin_cache.dtype, device=sin_cache.device)
grid = (triton.cdiv(num_seqs, BLOCK_SIZE),)
decoding_cache_kernel[grid](
cache,
cos_cache,
sin_cache,
nlengths,
output,
cos_output,
sin_output,
cache_stride,
hidden_stride,
HIDDEN_DIM=hidden_dim,
@ -107,4 +145,4 @@ def get_xine_cache(lengths: torch.Tensor, cache: torch.Tensor, is_prompts: bool
num_warps=num_warps,
)
return output
return cos_output, sin_output

View File

@ -39,8 +39,8 @@ configs = [
x_names=["max_num_tokens"],
x_vals=[2**i for i in range(6, 12)],
line_arg="provider",
line_vals=["torch_get_cos_sin_func", "triton_get_xine_func"],
line_names=["torch_get_cos_sin_func", "triton_get_xine_func"],
line_vals=["torch_get_cos_sin", "triton_get_cos_sin"],
line_names=["torch_get_cos_sin", "triton_get_cos_sin"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name="Get_cos-sin_func",
@ -58,19 +58,15 @@ def benchmark_get_xine_cache(
):
warmup = 10
rep = 1000
max_token_per_seq = max_num_tokens // batch_size
dtype = torch.float16
cos_cache = torch.randn((max_num_tokens, head_dim), dtype=dtype, device="cuda")
sin_cache = torch.randn((max_num_tokens, head_dim), dtype=dtype, device="cuda")
lengths = torch.randint(2, max_token_per_seq, (batch_size,), device="cuda")
cos_cache = torch.randn((8912, head_dim), dtype=dtype, device="cuda")
sin_cache = torch.randn((8912, head_dim), dtype=dtype, device="cuda")
lengths = torch.randint(2, max_num_tokens, (batch_size,), device="cuda")
if provider == "torch_get_cos_sin_func":
fn = lambda: get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=False, dtype=dtype)
elif provider == "triton_get_xine_func":
fn = lambda: [
get_xine_cache(lengths, cos_cache, is_prompts=False),
get_xine_cache(lengths, sin_cache, is_prompts=False),
]
if provider == "torch_get_cos_sin":
fn = lambda: get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=True, dtype=dtype)
elif provider == "triton_get_cos_sin":
fn = lambda: get_xine_cache(lengths, cos_cache, sin_cache, is_prompts=True)
else:
raise ValueError("Undefined provider")