ColossalAI/colossalai/kernel/triton/no_pad_rotary_embedding.py

191 lines
5.6 KiB
Python

import torch
import triton
import triton.language as tl
"""
# Base autotune if needed
@triton.autotune(
configs=[
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=4),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":8,},num_warps=8),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=16),
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=32),
triton.Config({'BLOCK_HEAD':16,"BLOCK_TOKENS":16,},num_warps=4),
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":16,},num_warps=8),
],
key=['HEAD_DIM','q_total_tokens','Q_HEAD_NUM']
)
"""
@triton.jit
def rotary_embedding_kernel(
q,
k,
cos,
sin,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
q_total_tokens,
Q_HEAD_NUM: tl.constexpr,
K_HEAD_NUM: tl.constexpr,
HEAD_DIM: tl.constexpr,
BLOCK_HEAD: tl.constexpr,
BLOCK_TOKENS: tl.constexpr,
):
block_head_index = tl.program_id(0)
block_token_index = tl.program_id(1)
tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
dim_range0 = tl.arange(0, HEAD_DIM // 2)
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
off_q0 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_q1 = (
tokens_range[:, None, None] * q_token_stride
+ head_range[None, :, None] * q_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
off_k0 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range0[None, None, :] * head_dim_stride
)
off_k1 = (
tokens_range[:, None, None] * k_token_stride
+ head_range[None, :, None] * k_head_stride
+ dim_range1[None, None, :] * head_dim_stride
)
loaded_q0 = tl.load(
q + off_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_q1 = tl.load(
q + off_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k0 = tl.load(
k + off_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
loaded_k1 = tl.load(
k + off_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
other=0.0,
)
off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
# concat
tl.store(
q + off_q0,
out_q0,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
q + off_q1,
out_q1,
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k0,
out_k0,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
tl.store(
k + off_k1,
out_k1,
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
)
@torch.no_grad()
def rotary_embedding(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
):
"""
Args:
q: query tensor, [total_tokens, head_num, head_dim]
k: key tensor, [total_tokens, head_num, head_dim]
cos: cosine for rotary embedding, [max_position_len, head_dim]
sin: sine for rotary embedding, [max_position_len, head_dim]
lengths [num_seqs]
"""
q_total_tokens, q_head_num, head_dim = q.shape
assert q.size(0) == k.size(0)
BLOCK_HEAD = 4
BLOCK_TOKENS = 4
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
if head_dim >= 256:
num_warps = 32
elif head_dim >= 128:
num_warps = 16
else:
num_warps = 4
q_token_stride = q.stride(0)
q_head_stride = q.stride(1)
head_dim_stride = q.stride(2)
k_token_stride = k.stride(0)
k_head_stride = k.stride(1)
k_head_num = q.shape[1]
cos_token_stride = cos.stride(0)
cos_stride = cos.stride(1)
rotary_embedding_kernel[grid](
q,
k,
cos,
sin,
q_token_stride,
q_head_stride,
k_token_stride,
k_head_stride,
head_dim_stride,
cos_token_stride,
cos_stride,
q_total_tokens,
Q_HEAD_NUM=q_head_num,
K_HEAD_NUM=k_head_num,
HEAD_DIM=head_dim,
BLOCK_HEAD=BLOCK_HEAD,
BLOCK_TOKENS=BLOCK_TOKENS,
num_warps=num_warps,
)
return