mirror of https://github.com/hpcaitech/ColossalAI
191 lines
5.6 KiB
Python
191 lines
5.6 KiB
Python
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
"""
|
|
# Base autotune if needed
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=4),
|
|
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":8,},num_warps=8),
|
|
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":8,},num_warps=8),
|
|
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=16),
|
|
triton.Config({'BLOCK_HEAD':4,"BLOCK_TOKENS":4,},num_warps=32),
|
|
triton.Config({'BLOCK_HEAD':16,"BLOCK_TOKENS":16,},num_warps=4),
|
|
triton.Config({'BLOCK_HEAD':8,"BLOCK_TOKENS":16,},num_warps=8),
|
|
],
|
|
key=['HEAD_DIM','q_total_tokens','Q_HEAD_NUM']
|
|
)
|
|
"""
|
|
|
|
|
|
@triton.jit
|
|
def rotary_embedding_kernel(
|
|
q,
|
|
k,
|
|
cos,
|
|
sin,
|
|
q_token_stride,
|
|
q_head_stride,
|
|
k_token_stride,
|
|
k_head_stride,
|
|
head_dim_stride,
|
|
cos_token_stride,
|
|
cos_stride,
|
|
q_total_tokens,
|
|
Q_HEAD_NUM: tl.constexpr,
|
|
K_HEAD_NUM: tl.constexpr,
|
|
HEAD_DIM: tl.constexpr,
|
|
BLOCK_HEAD: tl.constexpr,
|
|
BLOCK_TOKENS: tl.constexpr,
|
|
):
|
|
block_head_index = tl.program_id(0)
|
|
block_token_index = tl.program_id(1)
|
|
|
|
tokens_range = block_token_index * BLOCK_TOKENS + tl.arange(0, BLOCK_TOKENS)
|
|
head_range = block_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
|
|
|
|
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
|
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
|
|
|
off_q0 = (
|
|
tokens_range[:, None, None] * q_token_stride
|
|
+ head_range[None, :, None] * q_head_stride
|
|
+ dim_range0[None, None, :] * head_dim_stride
|
|
)
|
|
off_q1 = (
|
|
tokens_range[:, None, None] * q_token_stride
|
|
+ head_range[None, :, None] * q_head_stride
|
|
+ dim_range1[None, None, :] * head_dim_stride
|
|
)
|
|
off_k0 = (
|
|
tokens_range[:, None, None] * k_token_stride
|
|
+ head_range[None, :, None] * k_head_stride
|
|
+ dim_range0[None, None, :] * head_dim_stride
|
|
)
|
|
off_k1 = (
|
|
tokens_range[:, None, None] * k_token_stride
|
|
+ head_range[None, :, None] * k_head_stride
|
|
+ dim_range1[None, None, :] * head_dim_stride
|
|
)
|
|
|
|
loaded_q0 = tl.load(
|
|
q + off_q0,
|
|
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
loaded_q1 = tl.load(
|
|
q + off_q1,
|
|
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
loaded_k0 = tl.load(
|
|
k + off_k0,
|
|
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
loaded_k1 = tl.load(
|
|
k + off_k1,
|
|
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
other=0.0,
|
|
)
|
|
|
|
off_cos_sin = tokens_range[:, None] * cos_token_stride + dim_range0[None, :] * cos_stride
|
|
|
|
loaded_cos = tl.load(cos + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
|
|
loaded_sin = tl.load(sin + off_cos_sin, mask=(tokens_range[:, None] < q_total_tokens), other=0.0)
|
|
|
|
out_q0 = loaded_q0 * loaded_cos[:, None, :] - loaded_q1 * loaded_sin[:, None, :]
|
|
out_q1 = loaded_q0 * loaded_sin[:, None, :] + loaded_q1 * loaded_cos[:, None, :]
|
|
|
|
out_k0 = loaded_k0 * loaded_cos[:, None, :] - loaded_k1 * loaded_sin[:, None, :]
|
|
out_k1 = loaded_k0 * loaded_sin[:, None, :] + loaded_k1 * loaded_cos[:, None, :]
|
|
|
|
# concat
|
|
tl.store(
|
|
q + off_q0,
|
|
out_q0,
|
|
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
)
|
|
tl.store(
|
|
q + off_q1,
|
|
out_q1,
|
|
mask=((head_range[None, :, None] < Q_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
)
|
|
tl.store(
|
|
k + off_k0,
|
|
out_k0,
|
|
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
)
|
|
tl.store(
|
|
k + off_k1,
|
|
out_k1,
|
|
mask=((head_range[None, :, None] < K_HEAD_NUM) & (tokens_range[:, None, None] < q_total_tokens)),
|
|
)
|
|
|
|
|
|
@torch.no_grad()
|
|
def rotary_embedding(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
):
|
|
"""
|
|
Args:
|
|
q: query tensor, [total_tokens, head_num, head_dim]
|
|
k: key tensor, [total_tokens, head_num, head_dim]
|
|
cos: cosine for rotary embedding, [max_position_len, head_dim]
|
|
sin: sine for rotary embedding, [max_position_len, head_dim]
|
|
lengths [num_seqs]
|
|
"""
|
|
q_total_tokens, q_head_num, head_dim = q.shape
|
|
assert q.size(0) == k.size(0)
|
|
BLOCK_HEAD = 4
|
|
BLOCK_TOKENS = 4
|
|
grid = lambda META: (triton.cdiv(q_head_num, META["BLOCK_HEAD"]), triton.cdiv(q_total_tokens, META["BLOCK_TOKENS"]))
|
|
|
|
if head_dim >= 256:
|
|
num_warps = 32
|
|
elif head_dim >= 128:
|
|
num_warps = 16
|
|
else:
|
|
num_warps = 4
|
|
|
|
q_token_stride = q.stride(0)
|
|
q_head_stride = q.stride(1)
|
|
head_dim_stride = q.stride(2)
|
|
|
|
k_token_stride = k.stride(0)
|
|
k_head_stride = k.stride(1)
|
|
|
|
k_head_num = q.shape[1]
|
|
|
|
cos_token_stride = cos.stride(0)
|
|
cos_stride = cos.stride(1)
|
|
|
|
rotary_embedding_kernel[grid](
|
|
q,
|
|
k,
|
|
cos,
|
|
sin,
|
|
q_token_stride,
|
|
q_head_stride,
|
|
k_token_stride,
|
|
k_head_stride,
|
|
head_dim_stride,
|
|
cos_token_stride,
|
|
cos_stride,
|
|
q_total_tokens,
|
|
Q_HEAD_NUM=q_head_num,
|
|
K_HEAD_NUM=k_head_num,
|
|
HEAD_DIM=head_dim,
|
|
BLOCK_HEAD=BLOCK_HEAD,
|
|
BLOCK_TOKENS=BLOCK_TOKENS,
|
|
num_warps=num_warps,
|
|
)
|
|
|
|
return
|