mirror of https://github.com/hpcaitech/ColossalAI
[fx] add test for meta tensor. (#1527)
* [fx] add test for meta tensor. * [fx] add test for meta tensor. * [fx] add test for meta tensor. * [fx] add test for meta tensor. * [fx] fix error.pull/1535/head
parent
4b3d6caeb3
commit
7dc53237c3
|
@ -0,0 +1,88 @@
|
|||
from typing import Any, Callable, Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
|
||||
import pytest
|
||||
|
||||
try:
|
||||
meta_lib = torch.library.Library("aten", "IMPL", "Meta")
|
||||
INCOMPATIBLE = False # version > 1.12.0
|
||||
except:
|
||||
INCOMPATIBLE = True
|
||||
|
||||
aten = torch.ops.aten
|
||||
|
||||
registered_meta = {
|
||||
('aten.convolution.default', True): [ # (aten ops, requires_backward)
|
||||
(nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
|
||||
(nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4)),
|
||||
(nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4, 4, 4)),
|
||||
(nn.ConvTranspose1d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2), torch.rand(2, 3, 4)),
|
||||
(nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
|
||||
dilation=2), torch.rand(2, 3, 4, 4)),
|
||||
(nn.ConvTranspose3d(in_channels=3, out_channels=4, kernel_size=2, padding=1,
|
||||
dilation=2), torch.rand(2, 3, 4, 4, 4)),
|
||||
],
|
||||
('aten.native_batch_norm.default', True): [
|
||||
(nn.BatchNorm1d(4), torch.rand(2, 4)),
|
||||
(nn.BatchNorm2d(4), torch.rand(1, 4, 4, 4)),
|
||||
(nn.BatchNorm3d(4), torch.rand(1, 4, 4, 4, 4)),
|
||||
],
|
||||
('aten.native_layer_norm.default', True): [(nn.LayerNorm(4), torch.rand(1, 2, 3, 4)),],
|
||||
('aten.avg_pool1d.default', True): [
|
||||
(nn.MaxPool1d(3, stride=2), torch.rand(4, 5, 5)),
|
||||
(nn.AvgPool1d(3, stride=2), torch.rand(4, 5, 5)),
|
||||
(nn.AdaptiveMaxPool1d(3), torch.rand(4, 5, 5)),
|
||||
(nn.AdaptiveAvgPool1d(3), torch.rand(4, 5, 5)),
|
||||
],
|
||||
('aten.avg_pool2d.default', True): [
|
||||
(nn.MaxPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AvgPool2d((3, 2), stride=(2, 1)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AdaptiveMaxPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
|
||||
(nn.AdaptiveAvgPool2d((3, 2)), torch.rand(2, 4, 5, 5)),
|
||||
],
|
||||
('aten.relu.default', True): [
|
||||
(nn.ReLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.LeakyReLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.SiLU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.GELU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.ELU(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Sigmoid(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Tanh(), torch.rand(4, 3, 1, 2)),
|
||||
(nn.Hardswish(), torch.rand(4, 3, 1, 2)),
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
def compare_all(tensor: torch.Tensor, meta_tensor: MetaTensor) -> Any:
|
||||
assert tensor.shape == meta_tensor.shape, f'the shape of tensor ({tensor.shape}) and meta tensor ({meta_tensor.shape}) does not match.'
|
||||
assert tensor.dtype == meta_tensor.dtype, f'the dtype of tensor ({tensor.dtype}) and meta tensor ({meta_tensor.dtype}) does not match.'
|
||||
assert tensor.stride() == meta_tensor.stride(
|
||||
), f'the stride of tensor ({tensor.stride()}) and meta tensor ({meta_tensor.stride()}) does not match.'
|
||||
|
||||
|
||||
def run_and_compare(f: Union[nn.Module, Callable], x: torch.Tensor, requires_backward=False) -> Any:
|
||||
x.requires_grad = requires_backward
|
||||
meta_x = MetaTensor(x.to('meta'))
|
||||
if isinstance(f, nn.Module):
|
||||
x_out, meta_out = f(x), f.to('meta')(meta_x)
|
||||
else:
|
||||
x_out, meta_out = f(x), f(meta_x)
|
||||
compare_all(x_out, meta_out)
|
||||
if requires_backward:
|
||||
x_out.sum().backward()
|
||||
meta_out.sum().backward()
|
||||
compare_all(x.grad, meta_x.grad)
|
||||
|
||||
|
||||
@pytest.mark.skipif(INCOMPATIBLE, reason='torch version is lower than 1.12.0')
|
||||
def test_meta_aten():
|
||||
for (aten_op, requires_backward), v in registered_meta.items():
|
||||
for f, x in v:
|
||||
run_and_compare(f, x, requires_backward)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_meta_aten()
|
|
@ -0,0 +1,63 @@
|
|||
import torchvision.models as tm
|
||||
import timm.models as tmm
|
||||
import torch
|
||||
from colossalai.fx.profiler import MetaTensor
|
||||
|
||||
import pytest
|
||||
|
||||
try:
|
||||
meta_lib = torch.library.Library("aten", "IMPL", "Meta")
|
||||
incompatible = False # version > 1.12.0
|
||||
except:
|
||||
incompatible = True
|
||||
|
||||
|
||||
tm_models = [
|
||||
tm.vgg11,
|
||||
tm.resnet18,
|
||||
tm.densenet121,
|
||||
tm.mobilenet_v3_small,
|
||||
tm.resnext50_32x4d,
|
||||
tm.wide_resnet50_2,
|
||||
tm.regnet_x_16gf,
|
||||
tm.mnasnet0_5,
|
||||
tm.efficientnet_b0,
|
||||
]
|
||||
|
||||
|
||||
tmm_models = [
|
||||
tmm.resnest.resnest50d,
|
||||
tmm.beit.beit_base_patch16_224,
|
||||
tmm.cait.cait_s24_224,
|
||||
tmm.efficientnet.efficientnetv2_m,
|
||||
tmm.resmlp_12_224,
|
||||
tmm.vision_transformer.vit_base_patch16_224,
|
||||
tmm.deit_base_distilled_patch16_224,
|
||||
tmm.convnext.convnext_base,
|
||||
tmm.vgg.vgg11,
|
||||
tmm.dpn.dpn68,
|
||||
tmm.densenet.densenet121,
|
||||
tmm.rexnet.rexnet_100,
|
||||
tmm.swin_transformer.swin_base_patch4_window7_224
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.skipif(incompatible, reason='torch version is lower than 1.12.0')
|
||||
def test_torchvision_models():
|
||||
for m in tm_models:
|
||||
model = m().to('meta')
|
||||
data = torch.rand(1000, 3, 224, 224, device='meta')
|
||||
model(MetaTensor(data)).sum().backward()
|
||||
|
||||
|
||||
@pytest.mark.skipif(incompatible, reason='torch version is lower than 1.12.0')
|
||||
def test_timm_models():
|
||||
for m in tmm_models:
|
||||
model = m().to('meta')
|
||||
data = torch.rand(1000, 3, 224, 224, device='meta')
|
||||
model(MetaTensor(data)).sum().backward()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_torchvision_models()
|
||||
test_timm_models()
|
Loading…
Reference in New Issue