mirror of https://github.com/hpcaitech/ColossalAI
[fx]patch nn.functional convolution (#1528)
parent
5156d5b4f8
commit
4b3d6caeb3
|
@ -3,4 +3,5 @@ from .arithmetic import *
|
|||
from .embedding import *
|
||||
from .normalization import *
|
||||
from .python_ops import *
|
||||
from .torch_ops import *
|
||||
from .torch_ops import *
|
||||
from .convolution import *
|
|
@ -0,0 +1,178 @@
|
|||
import torch
|
||||
import collections
|
||||
from itertools import repeat
|
||||
from ..registry import meta_patched_function
|
||||
import math
|
||||
|
||||
|
||||
def _ntuple(n, name="parse"):
|
||||
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable):
|
||||
return tuple(x)
|
||||
return tuple(repeat(x, n))
|
||||
|
||||
parse.__name__ = name
|
||||
return parse
|
||||
|
||||
|
||||
_single = _ntuple(1, "_single")
|
||||
_pair = _ntuple(2, "_pair")
|
||||
_triple = _ntuple(3, "_triple")
|
||||
|
||||
|
||||
def _extract_kwargs(kwargs):
|
||||
if 'stride' in kwargs:
|
||||
stride = kwargs['stride']
|
||||
else:
|
||||
stride = 1
|
||||
# TODO: process str type padding
|
||||
if 'padding' in kwargs:
|
||||
padding = kwargs['padding']
|
||||
else:
|
||||
padding = 0
|
||||
if 'dilation' in kwargs:
|
||||
dilation = kwargs['dilation']
|
||||
else:
|
||||
dilation = 1
|
||||
if 'output_padding' in kwargs:
|
||||
output_padding = kwargs['output_padding']
|
||||
else:
|
||||
output_padding = 0
|
||||
|
||||
return stride, padding, dilation, output_padding
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.nn.functional.conv1d)
|
||||
def torch_nn_functional_conv1d(input, weight, **kwargs):
|
||||
stride, padding, dilation, _ = _extract_kwargs(kwargs)
|
||||
|
||||
stride = _single(stride)
|
||||
padding = _single(padding)
|
||||
dilation = _single(dilation)
|
||||
|
||||
kernel_size = weight.shape[2:]
|
||||
l_in = input.shape[-1]
|
||||
c_out = weight.shape[0]
|
||||
l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
result_shape = input.shape[:-2] + (
|
||||
c_out,
|
||||
l_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.nn.functional.conv2d)
|
||||
def torch_nn_functional_conv2d(input, weight, **kwargs):
|
||||
stride, padding, dilation, _ = _extract_kwargs(kwargs)
|
||||
|
||||
stride = _pair(stride)
|
||||
padding = _pair(padding)
|
||||
dilation = _pair(dilation)
|
||||
|
||||
kernel_size = weight.shape[2:]
|
||||
h_in, w_in = input.shape[-2:]
|
||||
c_out = weight.shape[0]
|
||||
h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
||||
result_shape = input.shape[:-3] + (
|
||||
c_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.nn.functional.conv3d)
|
||||
def torch_nn_functional_conv3d(input, weight, **kwargs):
|
||||
stride, padding, dilation, _ = _extract_kwargs(kwargs)
|
||||
|
||||
stride = _triple(stride)
|
||||
padding = _triple(padding)
|
||||
dilation = _triple(dilation)
|
||||
|
||||
kernel_size = weight.shape[2:]
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
c_out = weight.shape[0]
|
||||
d_out = math.floor((d_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
h_out = math.floor((h_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
||||
w_out = math.floor((w_in + 2 * padding[2] - dilation[2] * (kernel_size[2] - 1) - 1) / stride[2] + 1)
|
||||
result_shape = input.shape[:-4] + (
|
||||
c_out,
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.nn.functional.conv_transpose1d)
|
||||
def torch_nn_functional_convtranspose1d(input, weight, **kwargs):
|
||||
stride, padding, dilation, output_padding = _extract_kwargs(kwargs)
|
||||
|
||||
stride = _single(stride)
|
||||
padding = _single(padding)
|
||||
dilation = _single(dilation)
|
||||
output_padding = _single(output_padding)
|
||||
|
||||
kernel_size = weight.shape[2:]
|
||||
l_in = input.shape[-1]
|
||||
c_out = weight.shape[1]
|
||||
l_out = math.floor((l_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) +
|
||||
output_padding[0] + 1)
|
||||
result_shape = input.shape[:-2] + (
|
||||
c_out,
|
||||
l_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.nn.functional.conv_transpose2d)
|
||||
def torch_nn_functional_convtranspose2d(input, weight, **kwargs):
|
||||
stride, padding, dilation, output_padding = _extract_kwargs(kwargs)
|
||||
|
||||
stride = _pair(stride)
|
||||
padding = _pair(padding)
|
||||
dilation = _pair(dilation)
|
||||
output_padding = _pair(output_padding)
|
||||
|
||||
kernel_size = weight.shape[2:]
|
||||
h_in, w_in = input.shape[-2:]
|
||||
c_out = weight.shape[1]
|
||||
h_out = math.floor((h_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) +
|
||||
output_padding[0] + 1)
|
||||
w_out = math.floor((w_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) +
|
||||
output_padding[1] + 1)
|
||||
result_shape = input.shape[:-3] + (
|
||||
c_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.nn.functional.conv_transpose3d)
|
||||
def torch_nn_functional_convtranspose3d(input, weight, **kwargs):
|
||||
stride, padding, dilation, output_padding = _extract_kwargs(kwargs)
|
||||
|
||||
stride = _triple(stride)
|
||||
padding = _triple(padding)
|
||||
dilation = _triple(dilation)
|
||||
output_padding = _triple(output_padding)
|
||||
|
||||
kernel_size = weight.shape[2:]
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
c_out = weight.shape[1]
|
||||
d_out = math.floor((d_in - 1) * stride[0] - 2 * padding[0] + dilation[0] * (kernel_size[0] - 1) +
|
||||
output_padding[0] + 1)
|
||||
h_out = math.floor((h_in - 1) * stride[1] - 2 * padding[1] + dilation[1] * (kernel_size[1] - 1) +
|
||||
output_padding[1] + 1)
|
||||
w_out = math.floor((w_in - 1) * stride[2] - 2 * padding[2] + dilation[2] * (kernel_size[2] - 1) +
|
||||
output_padding[2] + 1)
|
||||
result_shape = input.shape[:-4] + (
|
||||
c_out,
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
|
@ -0,0 +1,48 @@
|
|||
import torch
|
||||
from torch.nn import functional as F
|
||||
from colossalai.fx.tracer.meta_patch import patched_function
|
||||
|
||||
|
||||
def test_conv():
|
||||
# test F.conv_1d
|
||||
data_1d = torch.rand(3, 16, 10)
|
||||
weight_1d = torch.rand(3, 16, 3)
|
||||
out_1d = F.conv1d(data_1d, weight_1d)
|
||||
patched_out_1d = patched_function.torch_nn_functional_conv1d(data_1d, weight_1d)
|
||||
assert out_1d.shape == patched_out_1d.shape
|
||||
|
||||
# test F.conv_transpose1d
|
||||
weight_1d = torch.transpose(weight_1d, 0, 1)
|
||||
out_transpose_1d = F.conv_transpose1d(data_1d, weight_1d)
|
||||
patched_out_transpose_1d = patched_function.torch_nn_functional_convtranspose1d(data_1d, weight_1d)
|
||||
assert out_transpose_1d.shape == patched_out_transpose_1d.shape
|
||||
|
||||
# test F.conv2d
|
||||
data_2d = torch.rand(3, 16, 10, 10)
|
||||
weight_2d = torch.rand(3, 16, 3, 3)
|
||||
out_2d = F.conv2d(data_2d, weight_2d)
|
||||
patched_out_2d = patched_function.torch_nn_functional_conv2d(data_2d, weight_2d)
|
||||
assert out_2d.shape == patched_out_2d.shape
|
||||
|
||||
# test F.conv_transpose2d
|
||||
weight_2d = torch.transpose(weight_2d, 0, 1)
|
||||
out_transpose_2d = F.conv_transpose2d(data_2d, weight_2d)
|
||||
patched_out_transpose_2d = patched_function.torch_nn_functional_convtranspose2d(data_2d, weight_2d)
|
||||
assert out_transpose_2d.shape == patched_out_transpose_2d.shape
|
||||
|
||||
# test F.conv3d
|
||||
data_3d = torch.rand(3, 16, 10, 10, 10)
|
||||
weight_3d = torch.rand(3, 16, 3, 3, 3)
|
||||
out_3d = F.conv3d(data_3d, weight_3d)
|
||||
patched_out_3d = patched_function.torch_nn_functional_conv3d(data_3d, weight_3d)
|
||||
assert out_3d.shape == patched_out_3d.shape
|
||||
|
||||
# test F.conv_transpose3d
|
||||
weight_3d = torch.transpose(weight_3d, 0, 1)
|
||||
out_transpose_3d = F.conv_transpose3d(data_3d, weight_3d)
|
||||
patched_out_transpose_3d = patched_function.torch_nn_functional_convtranspose3d(data_3d, weight_3d)
|
||||
assert out_transpose_3d.shape == patched_out_transpose_3d.shape
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_conv()
|
Loading…
Reference in New Issue