|
|
|
@ -25,7 +25,8 @@ class SLTrainer(ABC):
|
|
|
|
|
optim (Optimizer): the optimizer to use for training
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
strategy: Strategy,
|
|
|
|
|
max_epochs: int,
|
|
|
|
|
model: nn.Module,
|
|
|
|
@ -50,10 +51,7 @@ class SLTrainer(ABC):
|
|
|
|
|
|
|
|
|
|
def fit(self, *args, **kwargs):
|
|
|
|
|
self._before_fit(*args, **kwargs)
|
|
|
|
|
for epoch in tqdm.trange(self.max_epochs,
|
|
|
|
|
desc="Epochs",
|
|
|
|
|
disable=not is_rank_0() or self.no_epoch_bar
|
|
|
|
|
):
|
|
|
|
|
for epoch in tqdm.trange(self.max_epochs, desc="Epochs", disable=not is_rank_0() or self.no_epoch_bar):
|
|
|
|
|
self._train(epoch)
|
|
|
|
|
self._eval(epoch)
|
|
|
|
|
|
|
|
|
@ -75,8 +73,7 @@ class OnPolicyTrainer(ABC):
|
|
|
|
|
buffer: NaiveReplayBuffer,
|
|
|
|
|
sample_buffer: bool,
|
|
|
|
|
dataloader_pin_memory: bool,
|
|
|
|
|
callbacks: List[Callback] = []
|
|
|
|
|
) -> None:
|
|
|
|
|
callbacks: List[Callback] = []) -> None:
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.strategy = strategy
|
|
|
|
|
self.buffer = buffer
|
|
|
|
@ -154,7 +151,8 @@ class OnPolicyTrainer(ABC):
|
|
|
|
|
self._learn(update_step)
|
|
|
|
|
self._on_learn_epoch_end(update_step)
|
|
|
|
|
|
|
|
|
|
def fit(self,
|
|
|
|
|
def fit(
|
|
|
|
|
self,
|
|
|
|
|
prompt_dataloader: DataLoader,
|
|
|
|
|
pretrain_dataloader: DataLoader,
|
|
|
|
|
num_episodes: int,
|
|
|
|
@ -175,23 +173,16 @@ class OnPolicyTrainer(ABC):
|
|
|
|
|
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader)
|
|
|
|
|
|
|
|
|
|
with self._fit_ctx():
|
|
|
|
|
for episode in tqdm.trange(num_episodes,
|
|
|
|
|
desc="Episodes",
|
|
|
|
|
disable=not is_rank_0()):
|
|
|
|
|
for episode in tqdm.trange(num_episodes, desc="Episodes", disable=not is_rank_0()):
|
|
|
|
|
with self._episode_ctx(episode):
|
|
|
|
|
for collect_step in tqdm.trange(num_collect_steps,
|
|
|
|
|
desc="Collect steps",
|
|
|
|
|
disable=not is_rank_0()):
|
|
|
|
|
for collect_step in tqdm.trange(num_collect_steps, desc="Collect steps", disable=not is_rank_0()):
|
|
|
|
|
self._collect_phase(collect_step)
|
|
|
|
|
if not self.sample_buffer:
|
|
|
|
|
# HACK(cwher): according to the design of boost API, dataloader should also be boosted,
|
|
|
|
|
# but it is impractical to adapt this pattern in RL training. Thus, I left dataloader unboosted.
|
|
|
|
|
# I only call strategy.setup_dataloader() to setup dataloader.
|
|
|
|
|
self.dataloader = self.strategy.setup_dataloader(self.buffer,
|
|
|
|
|
self.dataloader_pin_memory)
|
|
|
|
|
for update_step in tqdm.trange(num_update_steps,
|
|
|
|
|
desc="Update steps",
|
|
|
|
|
disable=not is_rank_0()):
|
|
|
|
|
self.dataloader = self.strategy.setup_dataloader(self.buffer, self.dataloader_pin_memory)
|
|
|
|
|
for update_step in tqdm.trange(num_update_steps, desc="Update steps", disable=not is_rank_0()):
|
|
|
|
|
self._update_phase(update_step)
|
|
|
|
|
# NOTE: this is for on-policy algorithms
|
|
|
|
|
self.buffer.clear()
|
|
|
|
|