[moe] remove ops

colossalchat
hxwang 4 months ago committed by Hongxin Liu
parent 70c9924d0d
commit 74b03de3f9

@ -440,114 +440,3 @@ def all_to_all_uneven(
inputs.requires_grad inputs.requires_grad
), "Input must require grad to assure that backward is executed, otherwise it might hang the program." ), "Input must require grad to assure that backward is executed, otherwise it might hang the program."
return AllToAllUneven.apply(inputs, input_split_sizes, output_split_sizes, group, overlap) return AllToAllUneven.apply(inputs, input_split_sizes, output_split_sizes, group, overlap)
# ===========================================================
# This code section was modified from
# https://github.com/microsoft/DeepSpeed/blob/3d347276ce80e1a29e777c839d1d7fabe8e5f034/deepspeed/moe/mappings.py
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
# The file has been adapted from the following Megatron-LM file:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/mappings.py
# Git commit hash: 9dc3c42a84aa656f583703cf8b6b4f79f712b796
# We retain the following copyright from the original files:
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: used when non-moe are tp but moe are not
def _gather_tokens(input_, dim: int, tp_group: ProcessGroup):
"""Gather tensors and concatenate them along a dimension"""
input_ = input_.contiguous()
# Size and dimension.
rank = tp_group.rank()
tensor_list = [torch.empty_like(input_) for _ in range(tp_group.size())]
tensor_list[rank] = input_
dist.all_gather(tensor_list, input_, group=tp_group)
# Note: torch.cat already creates a contiguous tensor.
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
def _drop_tokens(input_, dim: int, tp_group: ProcessGroup):
"""Divide a tensor among the tensor parallel ranks"""
total_chunks = tp_group.size()
this_chunk = tp_group.rank()
assert (
input_.shape[dim] % total_chunks == 0
), f"input dimension {dim} ({input_.shape[dim]}) is not divisible by tensor parallel world size ({total_chunks})"
chunk_size = input_.shape[dim] // total_chunks
return torch.narrow(input_, dim, this_chunk * chunk_size, chunk_size)
class _GatherTokens(torch.autograd.Function):
"""All gather tokens among the tensor parallel ranks"""
@staticmethod
def forward(ctx, input_: torch.Tensor, dim: int, tp_group: ProcessGroup) -> torch.Tensor:
ctx.dim = dim
ctx.tp_group = tp_group
return _gather_tokens(input_, dim, tp_group)
@staticmethod
def backward(ctx, grad_output):
return _drop_tokens(grad_output, ctx.dim, ctx.tp_group), None, None
class _DropTokens(torch.autograd.Function):
"Divide tokens equally among the tensor parallel ranks"
@staticmethod
def forward(ctx, input_: torch.Tensor, dim: int, tp_group: ProcessGroup) -> torch.Tensor:
ctx.dim = dim
ctx.tp_group = tp_group
return _drop_tokens(input_, dim, tp_group)
@staticmethod
def backward(ctx, input_: torch.Tensor) -> Tuple[torch.Tensor, None]:
return _gather_tokens(input_, ctx.dim, ctx.tp_group), None, None
def gather_tokens(input_, dim: int, tp_group: ProcessGroup):
if tp_group.size() == 1:
# no tensor parallelism for non-experts
return input_
assert (
input_.requires_grad
), "Input must require grad to assure that backward is executed, otherwise it might hang the program."
return _GatherTokens.apply(input_, dim, tp_group)
def drop_tokens(input_, dim: int, tp_group: ProcessGroup):
if tp_group.size() == 1:
# no tensor parallelism for non-experts
return input_
assert (
input_.requires_grad
), "Input must require grad to assure that backward is executed, otherwise it might hang the program."
return _DropTokens.apply(input_, dim, tp_group)
# ===========================================================

Loading…
Cancel
Save